17 research outputs found

    Experimental Infection of Culex Annulirostris, Culex Gelidus, and Aedes Vigilax With a Yellow Fever/Japanese Encephalitis Virus Vaccine Chimera (Chimerivax TM-JE)

    No full text
    Article also free to read on publisher website Australian mosquitoes from which Japanese encephalitis virus (JEV) has been recovered (Culex annulirostris, Culex gelidus, and Aedes vigilax) were assessed for their ability to be infected with the ChimeriVax-JE vaccine, with yellow fever vaccine virus 17D (YF 17D) from which the backbone of ChimeriVax-JE vaccine is derived and with JEV-Nakayama. None of the mosquitoes became infected after being fed orally with 6.1 log(10) plaque-forming units (PFU)/mL of ChimeriVax-JE vaccine, which is greater than the peak viremia in vaccinees (mean peak viremia = 4.8 PFU/mL, range = 0-30 PFU/mL of 0.9 days mean duration, range = 0-11 days). Some members of all three species of mosquito became infected when fed on JEV-Nakayama, but only Ae. vigilax was infected when fed on YF 17D. The results suggest that none of these three species of mosquito are likely to set up secondary cycles of transmission of ChimeriVax-JE in Australia after feeding on a viremic vaccinee

    Experimental Infection of Culex Annulirostris, Culex Gelidus, and Aedes Vigilax With a Yellow Fever/Japanese Encephalitis Virus Vaccine Chimera (Chimerivax TM-JE)

    No full text
    Article also free to read on publisher website\ud \ud Australian mosquitoes from which Japanese encephalitis virus (JEV) has been recovered (Culex annulirostris, Culex gelidus, and Aedes vigilax) were assessed for their ability to be infected with the ChimeriVax-JE vaccine, with yellow fever vaccine virus 17D (YF 17D) from which the backbone of ChimeriVax-JE vaccine is derived and with JEV-Nakayama. None of the mosquitoes became infected after being fed orally with 6.1 log(10) plaque-forming units (PFU)/mL of ChimeriVax-JE vaccine, which is greater than the peak viremia in vaccinees (mean peak viremia = 4.8 PFU/mL, range = 0-30 PFU/mL of 0.9 days mean duration, range = 0-11 days). Some members of all three species of mosquito became infected when fed on JEV-Nakayama, but only Ae. vigilax was infected when fed on YF 17D. The results suggest that none of these three species of mosquito are likely to set up secondary cycles of transmission of ChimeriVax-JE in Australia after feeding on a viremic vaccinee

    Single Mutation in the Flavivirus Envelope Protein Hinge Region Increases Neurovirulence for Mice and Monkeys but Decreases Viscerotropism for Monkeys: Relevance to Development and Safety Testing of Live, Attenuated Vaccines

    No full text
    A chimeric yellow fever (YF) virus/Japanese encephalitis (JE) virus vaccine (ChimeriVax-JE) was constructed by insertion of the prM-E genes from the attenuated JE virus SA14-14-2 vaccine strain into a full-length cDNA clone of YF 17D virus. Passage in fetal rhesus lung (FRhL) cells led to the emergence of a small-plaque virus containing a single Met→Lys amino acid mutation at E279, reverting this residue from the SA14-14-2 to the wild-type amino acid. A similar virus was also constructed by site-directed mutagenesis (J. Arroyo, F. Guirakhoo, S. Fenner, Z.-X. Zhang, T. P. Monath, and T. J. Chambers, J. Virol. 75:934-942, 2001). The E279 mutation is located in a beta-sheet in the hinge region of the E protein that is responsible for a pH-dependent conformational change during virus penetration from the endosome into the cytoplasm of the infected cell. In independent transfection-passage studies with FRhL or Vero cells, mutations appeared most frequently in hinge 4 (bounded by amino acids E266 to E284), reflecting genomic instability in this functionally important region. The E279 reversion caused a significant increase in neurovirulence as determined by the 50% lethal dose and survival distribution in suckling mice and by histopathology in rhesus monkeys. Based on sensitivity and comparability of results with those for monkeys, the suckling mouse is an appropriate host for safety testing of flavivirus vaccine candidates for neurotropism. After intracerebral inoculation, the E279 Lys virus was restricted with respect to extraneural replication in monkeys, as viremia and antibody levels (markers of viscerotropism) were significantly reduced compared to those for the E279 Met virus. These results are consistent with the observation that empirically derived vaccines developed by mouse brain passage of dengue and YF viruses have increased neurovirulence for mice but reduced viscerotropism for humans

    Sequential immunization with heterologous chimeric flaviviruses induces broad-spectrum cross-reactive CD8+ T cell responses

    No full text
    Flavivirus vaccines based on ChimeriVax technology contain the nonstructural genes of the yellow fever vaccine and the premembrane and envelope genes of heterologous flaviviruses, such as Japanese encephalitis and West Nile viruses. These chimeric vaccines induce both humoral and cell-mediated immunity. Mice were vaccinated with yellow fever, chimeric Japanese encephalitis virus (YF/JE), or chimeric West Nile virus (YF/WN) vaccines, followed by a secondary homologous or heterologous vaccination; the hierarchy and function of CD8(+) T cell responses to a variable envelope epitope were then analyzed and compared with those directed against a conserved immunodominant yellow fever virus NS3 epitope. Sequential vaccination with heterologous chimeric flaviviruses generated a broadly cross-reactive CD8(+) T cell response dependent on both the sequence of infecting viruses and epitope variant. The enhanced responses to variant epitopes after heterologous vaccination were not related to preexisting antibody or to higher virus titers. These results demonstrate that the sequence of vaccination affects the expansion of cross-reactive CD8(+) T cells after heterologous chimeric flavivirus challenge

    High Fidelity of Yellow Fever Virus RNA Polymerase

    No full text
    Three consecutive plaque purifications of four chimeric yellow fever virus-dengue virus (ChimeriVax-DEN) vaccine candidates against dengue virus types 1 to 4 were performed. The genome of each candidate was sequenced by the consensus approach after plaque purification and additional passages in cell culture. Our data suggest that the nucleotide sequence error rate for SP6 RNA polymerase used in the in vitro transcription step to initiate virus replication was as high as 1.34 × 10(−4) per copied nucleotide and that the error rate of the yellow fever virus RNA polymerase employed by the chimeras for genome replication in infected cells was as low as 1.9 × 10(−7) to 2.3 × 10(−7). Clustering of beneficial mutations that accumulated after multiple virus passages suggests that the N-terminal part of the prM protein, a specific site in the middle of the E protein, and the NS4B protein may be essential for nucleocapsid-envelope interaction during flavivirus assembly

    High neutralizing antibody levels against SARS-CoV-2 Omicron BA.1 and BA.2 after UB-612 vaccine booster

    No full text
    The highly transmissible Omicron variant has caused high rates of breakthrough infections in those previously vaccinated with ancestral strain COVID-19 vaccines. Here, we demonstrate that a booster dose of UB-612 vaccine candidate delivered 7-9 months after primary vaccination increased neutralizing antibody levels by 131-, 61- and 49-fold against ancestral SARS-CoV-2, Omicron BA.1, and BA.2 variants, respectively. Based on the RBD protein-binding antibody responses, the UB-612 third dose booster may lead to an estimated ∼95% efficacy against symptomatic COVID-19 caused by the ancestral strain. Our results support UB-612 as a potential potent booster against current and emerging SARS-CoV-2 variants

    Live Attenuated Chimeric Yellow Fever Dengue Type 2 (Chimeri Vax -DEN2) Vaccine: Phase 1 clinical trial for safety and immunogenicity

    No full text
    A randomized double-blind Phase I Trial was conducted to evaluate safety, tolerability, and immunogenicity of a yellow fever (YF)-dengue 2 (DEN2) chimera (ChimeriVax™-DEN2) in comparison to that of YF vaccine (YF-VAX®). Forty-two healthy YF naïve adults randomly received a single dose of either ChimeriVax™-DEN2 (high dose, 5 log plaque forming units [PFU] or low dose, 3 log PFU) or YF-VAXâ by the subcutaneous route (SC). To determine the effect of YF pre-immunity on the ChimeriVaxTM-DEN2 vaccine, 14 subjects previously vaccinated against YF received a high dose of ChimeriVax™-DEN2 as an open-label vaccine. Most adverse events were similar to YF-VAX® and of mild to moderate intensity, with no serious side-effects. One hundred percent and 92.3% of YF naïve subjects inoculated with 5.0 and 3.0 log10 PFU of ChimeriVaxTM-DEN2, respectively, seroconverted to wt DEN2 (strain 16681); 92% of subjects inoculated with YF-VAX® seroconverted to YF 17D virus but none of YF naïve subjects inoculated with ChimeriVax-DEN2 seroconverted to YF 17D virus. Low seroconversion rates to heterologous DEN serotypes 1, 3, and 4 were observed in YF naïve subjects inoculated with either ChimeriVax™-DEN2 or YF-VAX®. In contrast, 100% of YF immune subjects inoculated with ChimeriVax™-DEN2 seroconverted to all 4 DEN serotypes. Surprisingly, levels of neutralizing antibodies to DEN 1, 2, and 3 viruses in YF immune subjects persisted after 1 year. These data demonstrated that 1) the safety and immunogenicity profile of the ChimeriVax™-DEN2 vaccine is consistent with that of YF-VAX®, and 2) pre-immunity to YF virus does not interfere with ChimeriVaxTM-DEN2 immunization, but induces a long lasting and cross neutralizing antibody response to all 4 DEN serotypes. The latter observation can have practical implications toward development of a dengue vaccine
    corecore