262 research outputs found

    Minimising Bloat Through Development of White Clover (\u3cem\u3eT. Repens\u3c/em\u3e) with High Levels of Condensed Tannins

    Get PDF
    White clover constitutes a low percentage of the overall sward content in Irish pastureland despite EU directives limiting the use of nitrogenous fertilizers. This is mainly due to the tendency of large amounts of white clover to cause bloat. Bloat is a potentially fatal build up of proteinaceous foam in the guts of ruminants. Some lesser cultivated legumes such as Lotus species contain condensed tannins (CT) that decrease the incidence of bloated animals. The project’s objective is to reduce the risk of bloat by generating white clover cultivars with high CT content. We are investigating whether expression of the ANTHOCYANIN REDUCTASE gene (BAN) in transgenic white clover and Medicago truncatula (model) plants leads to increased CT levels (Xie et al., 2003)

    Solid foundations? Towards a historical sociology of prison building programmes in England and Wales, 1959–2015

    Get PDF
    Between 1959 and 2015 the UK government embarked upon five major phases of prison building in England and Wales. Drawing upon detailed archival research, this article offers a historical sociology of prison building programmes. It traces the evolution of prison building as a public policy concern and documents how this key site of penal policymaking was interpreted, and contested, by policy actors who were themselves embedded within deep institutional structures of power and meaning. It argues that prison building has moved from the margins to the mainstream of penal policy, shaped by strongly-held convictions about the liberal-democratic state, the competition for control of finite resources and the complex ?geography of administration? that underpins the British machinery of government

    Helicobacter pylori Impairs Murine Dendritic Cell Responses to Infection

    Get PDF
    International audienceBACKGROUND: Helicobacter pylori, a human pathogen associated with chronic gastritis, peptic ulcer and gastric malignancies, is generally viewed as an extracellular microorganism. Here, we show that H. pylori replicates in murine bone marrow derived-dendritic cells (BMDCs) within autophagosomes. METHODOLOGY/PRINCIPAL FINDINGS: A 10-fold increase of CFU is found between 2 h and 6 h p.i. in H. pylori-infected BMDCs. Autophagy is induced around the bacterium and participates at late time points of infection for the clearance of intracellular H. pylori. As a consequence of infection, LC3, LAMP1 and MHC class II molecules are retained within the H. pylori-containing vacuoles and export of MHC class II molecules to cell surface is blocked. However, formalin-fixed H. pylori still maintain this inhibitory activity in BMDC derived from wild type mice, but not in from either TLR4 or TLR2-deficient mice, suggesting the involvement of H. pylori-LPS in this process. TNF-alpha, IL-6 and IL-10 expression was also modulated upon infection showing a TLR2-specific dependent IL-10 secretion. No IL-12 was detected favoring the hypothesis of a down modulation of DC functions during H. pylori infection. Furthermore, antigen-specific T cells proliferation was also impaired upon infection. CONCLUSIONS/SIGNIFICANCE: H. pylori can infect and replicate in BMDCs and thereby affects DC-mediated immune responses. The implication of this new finding is discussed for the biological life cycle of H. pylori in the host

    Intraspecies Variation in the Emergence of Hyperinfectious Bacterial Strains in Nature

    Get PDF
    Salmonella is a principal health concern because of its endemic prevalence in food and water supplies, the rise in incidence of multi-drug resistant strains, and the emergence of new strains associated with increased disease severity. Insights into pathogen emergence have come from animal-passage studies wherein virulence is often increased during infection. However, these studies did not address the prospect that a select subset of strains undergo a pronounced increase in virulence during the infective process- a prospect that has significant implications for human and animal health. Our findings indicate that the capacity to become hypervirulent (100-fold decreased LD50) was much more evident in certain S. enterica strains than others. Hyperinfectious salmonellae were among the most virulent of this species; restricted to certain serotypes; and more capable of killing vaccinated animals. Such strains exhibited rapid (and rapidly reversible) switching to a less-virulent state accompanied by more competitive growth ex vivo that may contribute to maintenance in nature. The hypervirulent phenotype was associated with increased microbial pathogenicity (colonization; cytotoxin production; cytocidal activity), coupled with an altered innate immune cytokine response within infected cells (IFN-β; IL-1β; IL-6; IL-10). Gene expression analysis revealed that hyperinfectious strains display altered transcription of genes within the PhoP/PhoQ, PhoR/PhoB and ArgR regulons, conferring changes in the expression of classical virulence functions (e.g., SPI-1; SPI-2 effectors) and those involved in cellular physiology/metabolism (nutrient/acid stress). As hyperinfectious strains pose a potential risk to human and animal health, efforts toward mitigation of these potential food-borne contaminants may avert negative public health impacts and industry-associated losses

    Detection of cfxA2, cfxA3, and cfxA6 genes in beta-lactamase producing oral anaerobes

    Get PDF
    ABSTRACT Purpose The aim of this study was to identify β-lactamase-producing oral anaerobic bacteria and screen them for the presence of cfxA and BlaTEM genes that are responsible for β-lactamase production and resistance to β-lactam antibiotics. Material and Methods Periodontal pocket debris samples were collected from 48 patients with chronic periodontitis and anaerobically cultured on blood agar plates with and without β-lactam antibiotics. Presumptive β-lactamase-producing isolates were evaluated for definite β-lactamase production using the nitrocefin slide method and identified using the API Rapid 32A system. Antimicrobial susceptibility was performed using disc diffusion and microbroth dilution tests as described by CLSI Methods. Isolates were screened for the presence of the β-lactamase-TEM (BlaTEM) and β-lactamase-cfxA genes using Polymerase Chain Reaction (PCR). Amplified PCR products were sequenced and the cfxA gene was characterized using Genbank databases. Results Seventy five percent of patients carried two species of β-lactamase-producing anaerobic bacteria that comprised 9.4% of the total number of cultivable bacteria. Fifty one percent of β-lactamase-producing strains mainly Prevotella, Porphyromonas, and Bacteroides carried the cfxA gene, whereas none of them carried blaTEM. Further characterization of the cfxA gene showed that 76.7% of these strains carried the cfxA2 gene, 14% carried cfxA3, and 9.3% carried cfxA6. The cfxA6 gene was present in three Prevotella spp. and in one Porphyromonas spp. Strains containing cfxA genes (56%) were resistant to the β-lactam antibiotics. Conclusion This study indicates that there is a high prevalence of the cfxA gene in β-lactamase-producing anaerobic oral bacteria, which may lead to drug resistance and treatment failure

    A Model of Salmonella Colitis with Features of Diarrhea in SLC11A1 Wild-Type Mice

    Get PDF
    Background: Mice do not get diarrhea when orally infected with S. enterica, but pre-treatment with oral aminoglycosides makes them susceptible to Salmonella colitis. However, genetically susceptible ItyS mice (Nramp1 G169D allele) die from systemic infection before they develop diarrhea, so a new model is needed to study the pathogenesis of diarrhea. We pretreated ItyR mice (Nramp1 G169) with oral kanamycin prior to infecting them with virulent S. Typhimurium strain 14028s in order to study Salmonella-induced diarrhea. We used both a visual scoring system and the measurement of fecal water content to measure diarrhea. BALB/c.D2 Nramp1 congenic started losing weight 5 days post-infection and they began to die from colitis 10–14 days after infection. A SPI-1 (invA) mutant caused cecal, but not colonic inflammation and did not cause diarrhea. A phoP- mutant did not cause manifestations of diarrhea in either normal or NADPHdeficient (gp91 phox) mice. However, strain 14028s caused severe colitis and diarrhea in gp91 phox-deficient mice on an ItyR background. pmr A and F mutants, which are less virulent in orally infected BALB/c mice, were fully virulent in this model of colitis. Conclusions: S. enterica must be able to invade the colonic epithelium and to persist in the colon in order to cause colitis with manifestations of diarrhea. The NADPH oxidase is not required for diarrhea in Salmonella colitis. Furthermore,

    Cationic Amino Acid Transporter 2 Enhances Innate Immunity during Helicobacter pylori Infection

    Get PDF
    Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2) is essential for transport of l-arginine (L-Arg) into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO) produced from inducible NO synthase (iNOS), or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2−/− mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2−/− mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2−/− mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection

    Inhibition of Bacterial Conjugation by Phage M13 and Its Protein g3p: Quantitative Analysis and Model

    Get PDF
    Conjugation is the main mode of horizontal gene transfer that spreads antibiotic resistance among bacteria. Strategies for inhibiting conjugation may be useful for preserving the effectiveness of antibiotics and preventing the emergence of bacterial strains with multiple resistances. Filamentous bacteriophages were first observed to inhibit conjugation several decades ago. Here we investigate the mechanism of inhibition and find that the primary effect on conjugation is occlusion of the conjugative pilus by phage particles. This interaction is mediated primarily by phage coat protein g3p, and exogenous addition of the soluble fragment of g3p inhibited conjugation at low nanomolar concentrations. Our data are quantitatively consistent with a simple model in which association between the pili and phage particles or g3p prevents transmission of an F plasmid encoding tetracycline resistance. We also observe a decrease in the donor ability of infected cells, which is quantitatively consistent with a reduction in pili elaboration. Since many antibiotic-resistance factors confer susceptibility to phage infection through expression of conjugative pili (the receptor for filamentous phage), these results suggest that phage may be a source of soluble proteins that slow the spread of antibiotic resistance genes

    Differential Response to Soil Salinity in Endangered Key Tree Cactus: Implications for Survival in a Changing Climate

    Get PDF
    Understanding reasons for biodiversity loss is essential for developing conservation and management strategies and is becoming increasingly urgent with climate change. Growing at elevations <1.4 m in the Florida Keys, USA, the endangered Key tree cactus (Pilosocereus robinii) experienced 84 percent loss of total stems from 1994 to 2007. The most severe losses of 99 and 88 percent stems occurred in the largest populations in the Lower Keys, where nine storms with high wind velocities and storm surges, occurred during this period. In contrast, three populations had substantial stem proliferation. To evaluate possible mortality factors related to changes in climate or forest structure, we examined habitat variables: soil salinity, elevation, canopy cover, and habitat structure near 16 dying or dead and 18 living plants growing in the Lower Keys. Soil salinity and elevation were the preliminary factors that discriminated live and dead plants. Soil salinity was 1.5 times greater, but elevation was 12 cm higher near dead plants than near live plants. However, distribution-wide stem loss was not significantly related to salinity or elevation. Controlled salinity trials indicated that salt tolerance to levels above 40 mM NaCl was related to maternal origin. Salt sensitive plants from the Lower Keys had less stem growth, lower root:shoot ratios, lower potassium: sodium ratios and lower recovery rate, but higher δ 13C than a salt tolerant lineage of unknown origin. Unraveling the genetic structure of salt tolerant and salt sensitive lineages in the Florida Keys will require further genetic tests. Worldwide rare species restricted to fragmented, low-elevation island habitats, with little or no connection to higher ground will face challenges from climate change-related factors. These great conservation challenges will require traditional conservation actions and possibly managed relocation that must be informed by studies such as these
    • …
    corecore