83 research outputs found

    Cell growth and differentiation in Arabidopsis epidermal cells

    Get PDF
    Plant epidermal cells are morphologically diverse, differing in size, shape, and function. Their unique morphologies reflect the integral function each cell performs in the organ to which it belongs. Cell morphogenesis involves multiple cellular processes acting in concert to create specialized shapes. The Arabidopsis epidermis contains numerous cell types greatly differing in shape, size, and function. Work on three types of epidermal cells, namely trichomes, root hairs, and pavement cells, has made significant progress towards understanding how plant cells reach their final morphology. These three cell types have highly distinct morphologies and each has become a model cell for the study of morphological processes. A growing body of knowledge is creating a picture of how endoreduplication, cytoskeletal dynamics, vesicle transport, and small GTPase signalling, work in concert to create specialized shapes. Similar mechanisms that determine cell shape and polarity are shared between these cell types, while certain mechanisms remain specific to eac

    The basis for ductility evaluation in SFRC structures in MC2020: An investigation on slabs and shallow beams

    Get PDF
    The paper presents a synthesis of an extensive experimental campaign on linear and two-dimensional steel fiber reinforced concrete (SFRC) structural elements carried out to check the ductility requirements aimed at guaranteeing limit analysis approaches for the computation of ultimate load-bearing capacity of SFRC structures; special attention is devoted to the role of the degree of redundancy of the structure. In particular, full-scale shallow beams and slabs reinforced with steel fibers (with or without conventional longitudinal reinforcement) were tested in two different laboratories: the Politecnico di Milano (PoliMI) and the University of Brescia (UniBS). In this experimental campaign, two different fiber contents and fiber types were considered. The experimental investigation, carried out within the activities to support Annex L of Eurocode 2, was fundamental also for developing the design rules included in the fib Model Code 2020 and allowed to formulate conclusions regarding optimization of the mix design, ductility, and design prediction at the ultimate capacity

    Control of Fruit Patterning in Arabidopsis by INDEHISCENT

    Get PDF
    AbstractThe Arabidopsis seedpod opens through a spring-loaded mechanism known as pod shatter, which is essential for dispersal of the seeds. Here, we identify INDEHISCENT (IND), an atypical bHLH protein, that is necessary for fruit opening and is involved in patterning each of the three fruit cell types required for seed dispersal. Previous studies suggested that FRUITFULL (FUL), a member of the MADS-domain transcription factor family, is required for fruit growth since ful mutant fruit fail to undergo the dramatic enlargement that normally occurs after fertilization. Here we show, however, that FUL is not directly required for fruit elongation and instead is required to prevent ectopic activity of IND. Our molecular and genetic studies suggest a model for the regulatory interactions among the genes that control fruit development and the mechanism that results in the expression of IND in a narrow stripe of cells

    Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research

    Full text link
    Prior to the availability of the genome sequence, the root of Arabidopsis had attracted a small but ardent group of researchers drawn to its accessibility and developmental simplicity. Roots are easily observed when grown on the surface of nutrient agar media, facilitating analysis of responses to stimuli such as gravity and touch. Developmental biologists were attracted to the simple radial organization of primary root tissues, which form a series of concentric cylinders around the central vascular tissue. Equally attractive was the mode of propagation, with stem cells at the tip giving rise to progeny that were confined to cell files. These properties of root development reduced the normal four-dimensional problem of development (three spatial dimensions and time) to a two-dimensional problem, with cell type on the radial axis and developmental time along the longitudinal axis. The availability of the complete Arabidopsis genome sequence has dramatically accelerated traditional genetic research on root biology, and has also enabled entirely new experimental strategies to be applied. Here we review examples of the ways in which availability of the Arabidopsis genome sequence has enhanced progress in understanding root biology.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79263/1/j.1365-313X.2010.04129.x.pd

    Mycorrhiza-induced resistance: more than the sum of its parts?

    Get PDF
    Plants can develop an enhanced defensive capacity in response to infection by arbuscular mycorrhizal fungi (AMF). This ‘mycorrhiza-induced resistance’ (MIR) provides systemic protection against a wide range of attackers and shares characteristics with systemic acquired resistance (SAR) after pathogen infection and induced systemic resistance (ISR) following root colonisation by non-pathogenic rhizobacteria. It is commonly assumed that fungal stimulation of the plant immune system is solely responsible for MIR. In this opinion article, we present a novel model of MIR that integrates different aspects of the induced resistance phenomenon. We propose that MIR is a cumulative effect of direct plant responses to mycorrhizal infection and indirect immune responses to ISR-eliciting rhizobacteria in the mycorrhizosphere

    Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots

    Get PDF
    A microarray carrying 5,648 probes of Medicago truncatula root-expressed genes was screened in order to identify those that are specifically regulated by the arbuscular mycorrhizal (AM) fungus Gigaspora rosea, by Pi fertilisation or by the phytohormones abscisic acid and jasmonic acid. Amongst the identified genes, 21% showed a common induction and 31% a common repression between roots fertilised with Pi or inoculated with the AM fungus G. rosea, while there was no obvious overlap in the expression patterns between mycorrhizal and phytohormone-treated roots. Expression patterns were further studied by comparing the results with published data obtained from roots colonised by the AM fungi Glomus mosseae and Glomus intraradices, but only very few genes were identified as being commonly regulated by all three AM fungi. Analysis of Pi concentrations in plants colonised by either of the three AM fungi revealed that this could be due to the higher Pi levels in plants inoculated by G. rosea compared with the other two fungi, explaining that numerous genes are commonly regulated by the interaction with G. rosea and by phosphate. Differential gene expression in roots inoculated with the three AM fungi was further studied by expression analyses of six genes from the phosphate transporter gene family in M. truncatula. While MtPT4 was induced by all three fungi, the other five genes showed different degrees of repression mirroring the functional differences in phosphate nutrition by G. rosea, G. mosseae and G. intraradices

    El Método Pilates y su implicancia en la salud postural

    No full text
    El presente trabajo pretende exponer la implicancia del Método Pilates en la salud postural y cómo dicha práctica regular previene patologías, lesiones y todo tipo de algias generadas en el cuerpo humano producto de retracciones, desbalances y debilitamiento de la estructuras musculares y ligamentosas, expuestas a los patrones de movimiento de la cotidianeidad y a los cambios fisiológicos del cuerpo, producto del paso del tiempo. Dentro de las mencionadas patologías podemos encontrar alteración de las curvas neutrales de la columna vertebral, desestabilización de la pelvis, recarga sobre articulación de rodilla o tobillo, tendinitis de hombro, etc

    El Método Pilates y su implicancia en la salud postural

    No full text
    El presente trabajo pretende exponer la implicancia del Método Pilates en la salud postural y cómo dicha práctica regular previene patologías, lesiones y todo tipo de algias generadas en el cuerpo humano producto de retracciones, desbalances y debilitamiento de la estructuras musculares y ligamentosas, expuestas a los patrones de movimiento de la cotidianeidad y a los cambios fisiológicos del cuerpo, producto del paso del tiempo. Dentro de las mencionadas patologías podemos encontrar alteración de las curvas neutrales de la columna vertebral, desestabilización de la pelvis, recarga sobre articulación de rodilla o tobillo, tendinitis de hombro, etc
    corecore