85 research outputs found

    Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    Get PDF
    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered

    As-Run Thermal Analysis of the GTL-1 Experiment Irradiated in the ATR South Flux Trap

    Get PDF
    The GTL-1 experiment was conducted to assess corrosion the performance of the proposed Boosted Fast Flux Loop booster fuel at heat flux levels {approx}30% above the design operating condition. Sixteen miniplates fabricated from 25% enriched, high-density U3Si2/Al dispersion fuel with 6061 aluminum cladding were subjected to peak beginning of cycle (BOC) heat fluxes ranging from 411 W/cm2 to 593 W/cm2. Miniplates fabricated with three different fuel variations (without fines, annealed, and with standard powder) performed equally well, with negligible irradiation-induced swelling and a normal fission density gradient. Both the standard and the modified prefilm procedures produced hydroxide films that adequately protected the miniplates from failure. A detailed finite element model was constructed to calculate temperatures and heat flux for an as-run cycle average effective south lobe power of 25.4 MW(t). Results of the thermal analysis are given at four times during the cycle: BOC at 0 effective full power days (EFPD), middle of cycle (MOC) at 18 EFPD, MOC at 36 EFPD, and end of cycle at 48.9 EFPD. The highest temperatures and heat fluxes occur at the BOC and decrease in a linear manner throughout the cycle. Miniplate heat flux levels and fuel, cladding, hydroxide, and coolant-hydroxide interface temperatures were calculated using the average measured hydroxide thickness on each miniplate. The hydroxide layers are the largest on miniplates nearest to the core midplane, where heat flux and temperature are highest. The hydroxide layer thickness averages 20.4 {mu}m on the six hottest miniplates (B3, B4, C1, C2, C3, and C4). This tends to exacerbate the heating of these miniplates, since a thicker hydroxide layer reduces the heat transfer from the fuel to the coolant. These six hottest miniplates have the following thermal characteristics at BOC: (1) Peak fuel centerline temperature >300 C; (2) Peak cladding temperature >200 C; (3) Peak hydroxide temperature >190 C; (4) Peak hydroxide-water interface temperature >140 C; and (5) Peak heat flux >565 W/cm2

    Multiphysics Integrated Coupling Environment (MICE) User Manual

    Get PDF
    The complex, multi-part nature of waste glass melters used in nuclear waste vitrification poses significant modeling challenges. The focus of this project has been to couple a 1D MATLAB model of the cold cap region within a melter with a 3D STAR-CCM+ model of the melter itself. The Multiphysics Integrated Coupling Environment (MICE) has been developed to create a cohesive simulation of a waste glass melter that accurately represents the cold cap. The one-dimensional mathematical model of the cold cap uses material properties, axial heat, and mass fluxes to obtain a temperature profile for the cold cap, the region where feed-to-glass conversion occurs. The results from Matlab are used to update simulation data in the three-dimensional STAR-CCM+ model so that the cold cap is appropriately incorporated into the 3D simulation. The two processes are linked through ModelCenter integration software using time steps that are specified for each process. Data is to be exchanged circularly between the two models, as the inputs and outputs of each model depend on the other
    • …
    corecore