22 research outputs found

    Hyperbolic geometry in the work of Johann Heinrich Lambert

    Full text link
    The memoir Theorie der Parallellinien (1766) by Johann Heinrich Lambert is one of the founding texts of hyperbolic geometry, even though its author's aim was, like many of his pre-decessors', to prove that such a geometry does not exist. In fact, Lambert developed his theory with the hope of finding a contradiction in a geometry where all the Euclidean axioms are kept except the parallel axiom and that the latter is replaced by its negation. In doing so, he obtained several fundamental results of hyperbolic geometry. This was sixty years before the first writings of Lobachevsky and Bolyai appeared in print. In the present paper, we present Lambert's main results and we comment on them. A French translation of the Theorie der Parallellinien, together with an extensive commentary, has just appeared in print (A. Papadopoulos and G. Th{\'e}ret, La th{\'e}orie des lignes parall{\`e}les de Johann Heinrich Lambert. Collection Sciences dans l'Histoire, Librairie Scientifique et Technique Albert Blanchard, Paris, 2014)

    The space of measured foliations of the hexagon

    Full text link
    The theory of geometric structures on a surface with nonempty boundary can be developed by using a decomposition of such a surface into hexagons, in the same way as the theory of geometric structures on a surface without boundary is developed using the decomposition of such a surface into pairs of pants. The basic elements of the theory for surfaces with boundary include the study of measured foliations and of hyperbolic structures on hexagons. It turns out that there is an interesting space of measured foliations on a hexagon, which is equipped with a piecewise-linear structure (in fact, a natural cell-decomposition), and this space is a natural boundary for the space of hyperbolic structures with geodesic boundary and right angles on such a hexagon. In this paper, we describe these spaces and the related structures

    Shortening all the simple closed geodesics on surfaces with boundary

    Full text link
    We give a proof of an unpublished result of Thurston showing that given any hyperbolic metric on a surface of finite type with nonempty boundary, there exists another hyperbolic metric on the same surface for which the lengths of all simple closed geodesics are shorter. (This is not possible for surfaces of finite type with empty boundary.) Furthermore, we show that we can do the shortening in such a way that it is bounded below by a positive constant. This improves a recent result obtained by Parlier in [2]. We include this result in a discussion of the weak metric theory of the Teichm\"uller space of surfaces with nonempty boundary.Comment: Revised version, to appear in the Proceedings of the AM

    On the negative convergence of Thurston's stretch lines

    No full text
    corecore