1 research outputs found

    Inverse problem for wave equation with sources and observations on disjoint sets

    Full text link
    We consider an inverse problem for a hyperbolic partial differential equation on a compact Riemannian manifold. Assuming that Γ1\Gamma_1 and Γ2\Gamma_2 are two disjoint open subsets of the boundary of the manifold we define the restricted Dirichlet-to-Neumann operator ΛΓ1,Γ2\Lambda_{\Gamma_1,\Gamma_2}. This operator corresponds the boundary measurements when we have smooth sources supported on Γ1\Gamma_1 and the fields produced by these sources are observed on Γ2\Gamma_2. We show that when Γ1\Gamma_1 and Γ2\Gamma_2 are disjoint but their closures intersect at least at one point, then the restricted Dirichlet-to-Neumann operator ΛΓ1,Γ2\Lambda_{\Gamma_1,\Gamma_2} determines the Riemannian manifold and the metric on it up to an isometry. In the Euclidian space, the result yields that an anisotropic wave speed inside a compact body is determined, up to a natural coordinate transformations, by measurements on the boundary of the body even when wave sources are kept away from receivers. Moreover, we show that if we have three arbitrary non-empty open subsets Γ1,Γ2\Gamma_1,\Gamma_2, and Γ3\Gamma_3 of the boundary, then the restricted Dirichlet-to-Neumann operators ΛΓj,Γk\Lambda_{\Gamma_j,\Gamma_k} for 1≤j<k≤31\leq j<k\leq 3 determine the Riemannian manifold to an isometry. Similar result is proven also for the finite-time boundary measurements when the hyperbolic equation satisfies an exact controllability condition
    corecore