130 research outputs found

    Typical Non–TiO2-Based Visible-Light Photocatalysts

    Get PDF
    Photocatalysis has received much attention as a potential solution to the worldwide energy shortage and for counteracting environmental degradation. However, the traditional photocatalyst, TiO2, cannot make use of visible light that accounts for 45% of solar spectrum because of a large bandgap (3.2 eV). Therefore, it is urgent to develop visible-light-driven photocatalysts. On the one hand, some modification technologies were explored to extend the light absorption of TiO2 to visible-light region, such as doping of metal and non-metal elements, dye sensitization, and so on. On the other hand, much effort has been directed toward the development of new visible-light photocatalysts. The good news is, some novel and efficient non-TiO2-based photocatalysts have been discovered, such as WO3, Ag3PO4, BiVO4, g-C3N4. In this chapter, these four typical visible light–driven semiconductor photocatalysts were highlighted. WO3 is a visible light–responsive photocatalyst that absorbs light up to ca. 480 nm. Besides that, WO3 has some advantages, such as low cost, harmlessness, and stability in acidic and oxidative conditions. Preparation of WO3 films with the deposition of noble metal is considered to be a promising approach for the photocatalytic applications. In addition, the characteristic morphology and improved photocatalytic performance of Ag3PO4-based and BiVO4-based have been raised up. New methods for fabrication Ag3PO4 with exposed high-energy facets and novel heterogeneous Ag3PO4 co-catalysts have been developed. Monoclinic BiVO4 is a promising photo-anode material for photocatalytic water splitting to produce hydrogen. Co-catalysts loaded on BiVO4 could improve the surface charge transfer efficiency. Furthermore, g-C3N4 is a promising visible-light photocatalyst due to its unique electronic structure. To date, g-C3N4-based photocatalysis has become a very hot research topic. The synthesis, bandgap engineering, and semiconductor composites of g-C3N4-based photocatalysts are highlighted

    Spatial Disassociation of Disrupted Functional Connectivity for the Default Mode Network in Patients with End-Stage Renal Disease

    Get PDF
    To investigate the aberrant functional connectivity of the default mode network (DMN) in patients with end-stage renal disease (ESRD) and their clinical relevance

    UV Stimulated Manganese Dioxide for the Persulfate Catalytic Degradation of Bisphenol A

    Get PDF
    One of the most commonly produced industrial chemicals worldwide, bisphenol A (BPA), is used as a precursor in plastics, resins, paints, and many other materials. It has been proved that BPA can cause long-term adverse effects on ecosystems and human health due to its toxicity as an endocrine disruptor. In this study, we developed an integrated MnO2/UV/persulfate (PS) process for use in BPA photocatalytic degradation from water and examined the reaction mechanisms, degradation pathways, and toxicity reduction. Comparative tests using MnO2, PS, UV, UV/MnO2, MnO2/PS, and UV/PS processes were conducted under the same conditions to investigate the mechanism of BPA catalytic degradation by the proposed MnO2/UV/PS process. The best performance was observed in the MnO2/UV/PS process in which BPA was completely removed in 30 min with a reduction rate of over 90% for total organic carbon after 2 h. This process also showed a stable removal efficiency with a large variation of pH levels (3.6 to 10.0). Kinetic analysis suggested that 1O2 and SO4

    Safety and effectiveness of HSK21542 for hemodialysis patients: a multiple ascending dose study

    Get PDF
    Background: HSK21542, a novel selective peripherally-restricted κ-opioid receptor agonist has been proven to be a safe and effective analgesic and antipruritic drug in both in vitro and in vivo studies. We aimed to evaluate its safety, pharmacokinetics and efficacy in hemodialysis patients over a 1-week treatment period, and to establish the optimal dosage for a further 12-week stage 2 trial.Methods: In this multiple ascending dose study, hemodialysis patients were randomly assigned to receive HSK21542 (0.05–0.80 μg/kg), or a placebo three times within 2.5 h at the end of each dialysis session for 1 week. Safety evaluations included reports of treatment-emergent adverse events (TEAEs); pharmacokinetics and efficacy outcomes were also assessed.Results: Among the 44 screened patients, 41 were enrolled and completed the trial. The overall incidence of TEAEs was higher in the HSK21542 group compared to the placebo group, with an incidence of 75.0%, 50.0%, 75.0%, and 88.9% in the range of 0.05–0.80 μg/kg. All TEAEs were grade 1 or 2 in severity. HSK21542 exhibited linear pharmacokinetics characteristics within the dose range 0.05–0.80 μg/kg, without drug accumulation after multiple-doses. Compared to the placebo, a significant decrease of the weekly mean Worst Itching Intensity Numerical Rating Scale was found in the HSK21542-0.30 μg/kg group (p = 0.046), but without significant improvement in the Skindex-16 score.Conclusion: HSK21542 was well tolerated in the dose range 0.05–0.80 μg/kg in hemodialysis patients. HSK21542-0.3 μg/kg exhibited promising efficacy in patients with moderate to severe pruritus and warrants a further Stage 2 trial.Clinical Trial Registration:https://clinicaltrials.gov/, identifier NCT04470154

    The Impact of Using mHealth Apps on Improving Public Health Satisfaction during the COVID-19 Pandemic: A Digital Content Value Chain Perspective

    No full text
    The use of mobile technology and equipment has been found to be successful in the governance of public health. In the context of the coronavirus disease 2019 (COVID-19) pandemic, mobile health (mhealth) apps are expected to play an important role in the governance of public health. This study establishes a structural equation model based on the digital content value chain framework, identifies the main values created by mhealth apps in the prevention and control of COVID-19, and surveys 500 citizens of China. The data were analyzed using an independent t-test and partial least squares structural equations (PLS-SEM). The results showed that people who use mhealth apps are more satisfied with public health governance than those who do not; the healthcare assurance value of mhealth apps and healthcare confidence positively influence the interaction between users and mhealth app functions, the interaction with information, and the interaction with doctors to improve users’ satisfaction with public health governance; and the parasocial relationships between doctors and users of mhealth apps positively affect the interactions between users and doctors to improve users’ satisfaction with public health governance. This study confirms the potential of mhealth apps toward improving public health governance during the COVID-19 pandemic from a new perspective and provides a new theoretical basis whereby mobile technology can contribute toward improving public health governance
    • …
    corecore