14 research outputs found

    The equivalent translational stiffness of steel studs

    Get PDF
    The effect of the resilience of the steel studs on the sound insulation of steel stud cavity walls can be modelled as an equivalent translational stiffness in simple models for predicting the sound insulation of walls. Numerical calculations (Poblet-Puig et al., 2009) have shown that this equivalent translational stiffness varies with frequency. Vigran (2010a) has derived a best-fit third order polynomial approximation to the logarithm of these numerical values as a function of the logarithm of the frequency for the most common type of steel stud. This paper uses an inverse experimental technique. It determines the values of the equivalent translational stiffness of steel studs which make Davy’s (2010) sound insulation theory agree best with experimental sound insulation data from the National Research Council of Canada (NRCC) (Halliwell et al., 1998) for 126 steel stud cavity walls with gypsum plasterboard on each side of the steel studs and sound absorbing material in the wall cavity. These values are approximately constant as a function of frequency up to 400 Hz. Above 400 Hz they increase approximately as a non-integer power of the frequency. The equivalent translational stiffness also depends on the mass per unit surface area of the cladding on each side of the steel studs and on the width of the steel studs. Above 400 Hz, this stiffness also depends on the stud spacing. The equivalent translational stiffness of steel studs determined in this paper and the best-fit approximation to that data are compared with that determined numerically by Poblet-Puig et al. (2009) and with Vigran’s (2010a) best-fit approximation as a function of frequency. The best-fit approximation to the inversely experimentally determined values of equivalent translational stiffness are used with Davy’s (2010) sound insulation prediction model to predict the sound insulation of steel stud cavity walls whose sound insulation has been determined experimentally by NRCC (Halliwell et al., 1998) or CSTB (Guigou-Carter and Villot, 2006)

    An empirical model for the equivalent translational compliance of steel studs

    Get PDF
    The effect of the resilience of the steel studs on the sound insulation of steel stud cavity walls can be modeled as an equivalent translational compliance in simple models for predicting the sound insulation of walls. Recent numerical calculations have shown that this equivalent translational compliance varies with frequency

    The prediction of flanking sound transmission below the critical frequency

    Get PDF
    Although reliable methods exist to predict the apparent sound reduction index of heavy, homogeneous isotopic building constructions, these methods are not appropriate for use with lightweight building constructions which typically have critical frequencies in or above the frequency range of interest. Three main methods have been proposed for extending the prediction of flanking sound transmission to frequencies below the critical frequency

    Experimental and numerical characterization of metallic studs

    Get PDF
    In this paper, the characterization of metallic studs used to mount lightweight double wall systems is studied both experimentally and numerically. The metallic studs are usually considered by introducing translational and rotational springs to couple the plasterboards composing the double wall. Therefore, the characterization involves determining these spring characteristics. The performance of this type of lightweight double wall in terms of sound transmission is presented in a companion paper. Different experimental setups have been investigated to determine the equivalent translational and rotational spring values. These experimental setups are described and involve the measurement of an input mobility. A finite element model of the laboratory tests has been developed. Shell and massive finite elements are employed in order to reproduce the experimental setups. A comparison of the measured and numerical results is shown. The FEM modelling is intended to help in developing new type of studs for double walls in order to obtain better sound transmission performance.Peer ReviewedPostprint (published version

    Specificities of Ground Vibration Induced by Freight Traffic, from the Track to a Building

    No full text

    Experimental and numerical characterization of metallic studs

    No full text
    In this paper, the characterization of metallic studs used to mount lightweight double wall systems is studied both experimentally and numerically. The metallic studs are usually considered by introducing translational and rotational springs to couple the plasterboards composing the double wall. Therefore, the characterization involves determining these spring characteristics. The performance of this type of lightweight double wall in terms of sound transmission is presented in a companion paper. Different experimental setups have been investigated to determine the equivalent translational and rotational spring values. These experimental setups are described and involve the measurement of an input mobility. A finite element model of the laboratory tests has been developed. Shell and massive finite elements are employed in order to reproduce the experimental setups. A comparison of the measured and numerical results is shown. The FEM modelling is intended to help in developing new type of studs for double walls in order to obtain better sound transmission performance.Peer Reviewe
    corecore