33 research outputs found

    TMS-evoked potential in the dorsolateral prefrontal cortex to assess the severity of depression disease: a TMS-EEG study

    Get PDF
    Objective: The combined use of transcranial magnetic stimulation and electroencephalography (TMS-EEG), as a powerful technique that can non-invasively probe the state of the brain, can be used as a method to study neurophysiological markers in the field of psychiatric disorders and discover potential diagnostic predictors. This study used TMS-evoked potentials (TEPs) to study the cortical activity of patients with major depressive disorder depression (MDD) and the correlation with clinical symptoms to provide an electrophysiological basis for the clinical diagnosis.Methods: A total of 41 patients and 42 healthy controls were recruited to study. Using TMS-EEG techniques to measure the left dorsolateral prefrontal cortex (DLPFC) ‘s TEP index and evaluate the clinical symptoms of MDD patients using the Hamilton Depression Scale-24 (HAMD-24).Results: MDD subjects performing TMS-EEG on the DLPFC showed lower cortical excitability P60 index levels than healthy controls. Further analysis revealed that the degree of P60 excitability within the DLPFC of MDD patients was significantly negatively correlated with the severity of depression.Conclusion: The low levels of P60 exhibited in DLPFC reflect low excitability in MDD; the P60 component can be used as a biomarker for MDD in clinical assessment tools

    FIGHT-Metric

    No full text
    To address the concern that a complete detection scheme for effective hardware Trojan identication is lacking, we have designed an RTL security metric in order to evalu-ate the quality of IP cores (with the same or similar func-tionality) and counter Trojan attacks at the pre-fabrication stages of the IP design ow. The proposed security metric is constructed on top of two criteria, from which a quantita-tive security value can be assigned to the target circuit: 1) Distribution of controllability; 2) Existence of rare events. The proposed metric, called FIGHT, is an automated tool whereby malicious modications to ICs and/or the vulner-ability of the IP core can be identied, by monitoring both internal node controllability and the corresponding control value distribution plotted as a histogram. Experimentation on an RS232 module was performed to demonstrate our dual security criteria and proved security degradation to the IP module upon hardware Trojan insertion. Copyright 2014 ACM

    Fight-Metric: Functional Identication Of Gate-Level Hardware Trustworthiness

    No full text
    To address the concern that a complete detection scheme for effective hardware Trojan identication is lacking, we have designed an RTL security metric in order to evalu-ate the quality of IP cores (with the same or similar func-tionality) and counter Trojan attacks at the pre-fabrication stages of the IP design ow. The proposed security metric is constructed on top of two criteria, from which a quantita-tive security value can be assigned to the target circuit: 1) Distribution of controllability; 2) Existence of rare events. The proposed metric, called FIGHT, is an automated tool whereby malicious modications to ICs and/or the vulner-ability of the IP core can be identied, by monitoring both internal node controllability and the corresponding control value distribution plotted as a histogram. Experimentation on an RS232 module was performed to demonstrate our dual security criteria and proved security degradation to the IP module upon hardware Trojan insertion. Copyright 2014 ACM

    A Numerical Investigation on Droplet Bag Breakup Behavior of Polymer Solution

    No full text
    The deformation and breakup of a polymer solution droplet plays a key role in inkjet printing technology, tablet-coating process, and other spray processes. In this study, the bag breakup behavior of the polymer droplet is investigated numerically. The simple coupled level set and volume of fluid (S-CLSVOF) method and the adaptive mesh refinement (AMR) technique are employed in the droplet breakup cases at different Weber numbers and Ohnesorge numbers. The nature of the polymer solution is handled using Herschel–Bulkley constitutive equations to describe the shear-thinning behavior. Breakup processes, external flow fields, deformation characteristics, energy evolutions, and drag coefficients are analyzed in detail. For the bag breakup of polymer droplets, the liquid bag will form an obvious reticular structure, which is very different from the breakup of a Newtonian fluid. It is found that when the aerodynamic force is dominant, the increase of the droplet viscous force will prolong the breakup time, but has little effect on the final kinetic energy of the droplet. Moreover, considering the large deformation of the droplet in the gas flow, a new formula with the cross-diameter (Dcro) is introduced to modify the droplet drag coefficient

    A Study of the Hydrodynamic Characteristics of Two-Dimensional Tandem Cascades

    No full text
    In comparison to single-row cascades, tandem cascades offer the advantages of reduced losses and enhanced operational capabilities, making them widely employed in compressor applications. However, current research on tandem cascades in hydraulic equipment remains relatively limited. In order to explore the potential application of two-dimensional tandem cascade structures in hydrodynamics and investigate their performance differences from single-row cascades, this study proposes a design scheme for a tandem cascade based on an existing single-row cascade design. Numerical simulation technology is utilized to compare and analyze the impact of these two designs on various flow losses under identical working conditions. The results indicate that compared to single-row vanes, the vane configuration of a serial-row design can better reduce losses and increase the pressure difference between the upper and lower surfaces of the vanes, thereby enhancing their load-bearing capacity and stability. This research finding is expected to provide valuable insights for future water pump design and optimization

    Fibroblast growth factor 21 inhibits atherosclerosis in apoE−/− mice by ameliorating Fas-mediated apoptosis

    No full text
    Abstract Background FGF21 is a critical endogenous regulator in energy homeostasis and systemic glucose and lipid metabolism. Despite intensive study of the metabolic functions of FGF21, its important role in heart disease needs further exploration. Apoptosis induced by ox-LDL in vascular endothelial cells is an important step in the progress of atherosclerosis. Methods The effects of FGF21 treatment on apoptosis induced by ox-LDL were tested in HUVECs. The role of FGF21 in atherosclerosis was studied by evaluating its function in apolipoprotein E double knockout (apoE−/−) mice. Results We found that apoptosis in HUVECs was alleviated by FGF21 treatment. The effects of FGF21 were independent of the ERK1/2 pathway and were mediated through inhibition of the Fas signaling pathway. FGF21 suppressed the development of atherosclerosis, and the administration of FGF21 ameliorated Fas-mediated apoptosis in apoE−/− mice. Conclusion FGF21 protects against apoptosis in HUVECs by suppressing the expression of Fas; furthermore, FGF21 alleviated atherosclerosis by ameliorating Fas-mediated apoptosis in apoE−/− mice

    Enhanced antitumor efficacy of an oncolytic herpes simplex virus expressing an endostatin-angiostatin fusion gene in human glioblastoma stem cell xenografts.

    No full text
    Viruses have demonstrated strong potential for the therapeutic targeting of glioblastoma stem cells (GSCs). In this study, the use of a herpes simplex virus carrying endostatin-angiostatin (VAE) as a novel therapeutic targeting strategy for glioblastoma-derived cancer stem cells was investigated. We isolated six stable GSC-enriched cultures from 36 human glioblastoma specimens and selected one of the stable GSCs lines for establishing GSC-carrying orthotopic nude mouse models. The following results were obtained: (a) VAE rapidly proliferated in GSCs and expressed endo-angio in vitro and in vivo 48 h and 10 d after infection, respectively; (b) compared with the control gliomas treated with rHSV or Endostar, the subcutaneous gliomas derived from the GSCs showed a significant reduction in microvessel density after VAE treatment; (c) compared with the control, a significant improvement was observed in the length of the survival of mice with intracranial and subcutaneous gliomas treated with VAE; (d) MRI analysis showed that the tumor volumes of the intracranial gliomas generated by GSCs remarkably decreased after 10 d of VAE treatment compared with the controls. In conclusion, VAE demonstrated oncolytic therapeutic efficacy in animal models of human GSCs and expressed an endostatin-angiostatin fusion gene, which enhanced antitumor efficacy most likely by restricting tumor microvasculature development
    corecore