309 research outputs found

    Hypernuclei in the quark-meson coupling model

    Get PDF
    We present results of hypernuclei calculated in the latest quark-meson coupling (QMC) model, where the effect of the mean scalar field in-medium on the one-gluon exchange hyperfine interaction, is also included self-consistently. The extra repulsion associated with this increased hyperfine interaction in-medium completely changes the predictions for {\Sigma} hypernuclei. Whereas in the earlier version of QMC they were bound by an amount similar to {\Lambda} hypernuclei, they are unbound in the latest version of QMC, in qualitative agreement with the experimental absence of such states.Comment: 6 pages, 3 figures, to be published in the proceedings of Achievements and New Directions in Subatomic Physics: Workshop in Honour of Tony Thomas' 60th Birthday, Adelaide, South Australia, 15-19 Feb 201

    Quark structure and nuclear effective forces

    Get PDF
    We formulate the quark meson coupling model as a many-body effective Hamiltonian. This leads naturally to the appearance of many-body forces. We investigate the zero range limit of the model and compare its Hartree-Fock Hamiltonian to that corresponding to the Skyrme effective force. By fixing the three parameters of the model to reproduce the binding and symmetry energy of nuclear matter, we find that it allows a very satisfactory interpretation of the Skyrme force.Comment: 4 pages, 1tabl

    Virtual Compton Scattering from the Proton and the Properties of Nucleon Excited States

    Get PDF
    We calculate the NN^* contributions to the generalized polarizabilities of the proton in virtual Compton scattering. The following nucleon excitations are included: N(1535)N^*(1535), N(1650)N^*(1650), N(1520)N^*(1520), N(1700)N^*(1700), Δ(1232)\Delta(1232), Δ(1620)\Delta^*(1620) and Δ(1700)\Delta^*(1700). The relationship between nucleon structure parameters, NN^* properties and the generalized polarizabilities of the proton is illustrated.Comment: 13 pages of text (Latex) plus 4 figures (as uuencoded Z-compressed .tar file created by csh script uufiles

    Comment about pion electro-production and the axial form factors

    Get PDF
    The claim by Haberzettl (Phys.Rev.Lett.85 (2000) 3576) that the axial form factor of the nucleon cannot be accessed through threshold pion electroproduction is unfounded

    Physical Origin of Density Dependent Force of the Skyrme Type within the Quark Meson Coupling Model

    Full text link
    A density dependent, effective nucleon-nucleon force of the Skyrme type is derived from the quark-meson coupling model -- a self-consistent, relativistic quark level description of nuclear matter. This new formulation requires no assumption that the mean scalar field is small and hence constitutes a significant advance over earlier work. The similarity of the effective interaction to the widely used SkM^* force encourages us to apply it to a wide range of nuclear problems, beginning with the binding energies and charge distributions of doubly magic nuclei. Finding acceptable results in this conventional arena, we apply the same effective interaction, within the Hartree-Fock-Bogoliubov approach, to the properties of nuclei far from stability. The resulting two neutron drip lines and shell quenching are quite satisfactory. Finally, we apply the relativistic formulation to the properties of dense nuclear matter in anticipation of future application to the properties of neutron stars.Comment: 2 references added, some changes in the tex

    New Predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory

    Full text link
    We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering (VCS) at O(p4){\cal O}(p^4) in heavy baryon chiral perturbation theory. At this order, no unknown low energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the VCS amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double polarization experiments which allow to access these spin-flip GPs of the nucleon.Comment: 15 pages, 3 figure

    Quarks in Finite Nuclei

    Get PDF
    We describe the development of a theoretical description of the structure of finite nuclei based on a relativistic quark model of the structure of the bound nucleons which interact through the (self-consistent) exchange of scalar and vector mesons.Comment: Invited talks presented at the Joint Japan-Australian Workshop on "Quarks, Hadrons and Nuclei", Adelaide, November 1995, to appear in Australian Jounal of Physic

    Towards a Connection Between Nuclear Structure and QCD

    Full text link
    As we search for an ever deeper understanding of the structure of hadronic matter one of the most fundamental questions is whether or not one can make a connection to the underlying theory of the strong interaction, QCD. We build on recent advances in the chiral extrapolation problem linking lattice QCD at relatively large ``light quark'' masses to the physical world to estimate the scalar polarizability of the nucleon. The latter plays a key role in modern relativistic mean-field descriptions of nuclei and nuclear matter (such as QMC) and, in particular, leads to a very natural saturation mechanism. We demonstrate that the value of the scalar polarizability extracted from the lattice data is consistent with that needed for a successful description of nuclei within the framework of QMC. In a very real sense this is the first hint of a direct connection between QCD and the properties of finite nuclei.Comment: Lecture presented at: 18th Nishinomiya-Yukawa Memorial Symposium On Strangeness In Nuclear Matter : 4-5 Dec 2003, Nishinomiya, Japa
    corecore