94 research outputs found

    Low-energy photon-photon collisions to two loops revisited

    Full text link
    In view of ongoing experimental activities to determine the pion polarizabilities, we have started to recalculate the available two-loop expressions in the framework of chiral perturbation theory, because they have never been checked before. We make use of the chiral Lagrangian at order p^6 now available, and of improved techniques to evaluate the two-loop diagrams. Here, we present the result for the neutral pions. The cross section for the reaction gamma+gamma->pi0+pi0 agrees with the earlier calculation within a fraction of a percent. We present analytic results for the dipole and quadrupole polarizabilities, and compare the latter with a recent evaluation from data on gamma+gamma->pi0+pi0.Comment: 28 pages, 7-eps figures, 1 tabl

    Kullback-Leibler and Renormalized Entropy: Applications to EEGs of Epilepsy Patients

    Full text link
    Recently, renormalized entropy was proposed as a novel measure of relative entropy (P. Saparin et al., Chaos, Solitons & Fractals 4, 1907 (1994)) and applied to several physiological time sequences, including EEGs of patients with epilepsy. We show here that this measure is just a modified Kullback-Leibler (K-L) relative entropy, and it gives similar numerical results to the standard K-L entropy. The latter better distinguishes frequency contents of e.g. seizure and background EEGs than renormalized entropy. We thus propose that renormalized entropy might not be as useful as claimed by its proponents. In passing we also make some critical remarks about the implementation of these methods.Comment: 15 pages, 4 Postscript figures. Submitted to Phys. Rev. E, 199

    Compton scattering on the nucleon at intermediate energies and polarizabilities in a microscopic model

    Get PDF
    A microscopic calculation of Compton scattering on the nucleon is presented which encompasses the lowest energies -- yielding nucleon polarizabilities -- and extends to energies of the order of 600 MeV. We have used the covariant "Dressed K-Matrix Model" obeying the symmetry properties which are appropriate in the different energy regimes. In particular, crossing symmetry, gauge invariance and unitarity are satisfied. The extent of violation of analyticity (causality) is used as an expansion parameter.Comment: 35 pages, 15 figures, using REVTeX. Modified version to be published in Phys. Rev. C, more extensive comparison with data for Compton scattering, all results unchange

    Radiative decays of decuplet hyperons

    Get PDF
    We calculate the radiative decay widths of decuplet hyperons in a chiral constituent quark model including electromagnetic exchange currents between quarks. Exchange currents contribute significantly to the E2 transition amplitude, while they largely cancel for the M1 transition amplitude. Strangeness suppression of the radiative hyperon decays is found to be weakened by exchange currents. Differences and similarities between our results and other recent model predictions are discussed.Comment: 11 pages, 1 eps figure, revtex, accepted for publication in Phys. Rev.

    Problems with Extraction of the Nucleon to Delta(1232) Photonic Amplitudes

    Get PDF
    We investigate the model dependence and the importance of choice of database in extracting the {\it physical} nucleon-Delta(1232) electromagnetic transition amplitudes, of interest to QCD and baryon structure, from the pion photoproduction observables. The model dependence is found to be much smaller than the range of values obtained when different datasets are fitted. In addition, some inconsistencies in the current database are discovered, and their affect on the extracted transition amplitudes is discussed.Comment: Revtex, 2 figs., submitted to PR

    Predictive powers of chiral perturbation theory in Compton scattering off protons

    Full text link
    We study low-energy nucleon Compton scattering in the framework of baryon chiral perturbation theory (Bχ\chiPT) with pion, nucleon, and Δ\Delta(1232) degrees of freedom, up to and including the next-to-next-to-leading order (NNLO). We include the effects of order p2p^2, p3p^3 and p4/Δp^4/\varDelta, with Δ300\varDelta\approx 300 MeV the Δ\Delta-resonance excitation energy. These are all "predictive" powers in the sense that no unknown low-energy constants enter until at least one order higher (i.e, p4p^4). Estimating the theoretical uncertainty on the basis of natural size for p4p^4 effects, we find that uncertainty of such a NNLO result is comparable to the uncertainty of the present experimental data for low-energy Compton scattering. We find an excellent agreement with the experimental cross section data up to at least the pion-production threshold. Nevertheless, for the proton's magnetic polarizability we obtain a value of (4.0±0.7)×104(4.0\pm 0.7)\times 10^{-4} fm3^3, in significant disagreement with the current PDG value. Unlike the previous χ\chiPT studies of Compton scattering, we perform the calculations in a manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB) expansion. The difference between the lowest order HBχ\chiPT and Bχ\chiPT results for polarizabilities is found to be appreciable. We discuss the chiral behavior of proton polarizabilities in both HBχ\chiPT and Bχ\chiPT with the hope to confront it with lattice QCD calculations in a near future. In studying some of the polarized observables, we identify the regime where their naive low-energy expansion begins to break down, thus addressing the forthcoming precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ

    Baryon Octet to Decuplet Electromagnetic Transitions

    Full text link
    The electromagnetic transition moments of the SU(3)SU(3)-flavor baryon octet to decuplet are examined within a lattice simulation of quenched QCD. The magnetic transition moment for the N  γΔN \; \gamma \to \Delta channel is found to be in agreement with recent experimental analyses. The lattice results indicate μpΔ/μp=0.88(15)\mu_{p \Delta} / \mu_p = 0.88(15). In terms of the Particle Data Group convention, fM1=0.231(41)f_{M1} = 0.231(41) GeV1/2{}^{-1/2} for p  γΔ+p \; \gamma \to \Delta^+ transitions. Lattice predictions for the hyperon M1M1 transition moments agree with those of a simple quark model. However the manner in which the quarks contribute to the transition moments in the lattice simulation is different from that anticipated by quark model calculations. The scalar quadrupole form factor exhibits a behavior consistent with previous multipole analyses. The E2/M1E2/M1 multipole transition moment ratios are also determined. The lattice results suggest REMGE2/GM1=+3±8R_{EM} \equiv -{\cal G}_{E2}/{\cal G}_{M1} = +3\pm 8 \% for p  γΔ+p \; \gamma \to \Delta^+ transitions. Of particular interest are significant nonvanishing signals for the E2/M1E2/M1 ratio in Ξ\Xi^- and Σ\Sigma^- electromagnetic transitions.Comment: PostScript file, 37 pages including figures. U. MD PP #93-085, U. KY PP #UK/92-09, TRIUMF PP #TRI-PP-92-12

    Full counting statistics of information content

    Full text link
    We review connections between the cumulant generating function of full counting statistics of particle number and the R\'enyi entanglement entropy. We calculate these quantities based on the fermionic and bosonic path-integral defined on multiple Keldysh contours. We relate the R\'enyi entropy with the information generating function, from which the probability distribution function of self-information is obtained in the nonequilibrium steady state. By exploiting the distribution, we analyze the information content carried by a single bosonic particle through a narrow-band quantum communication channel. The ratio of the self-information content to the number of bosons fluctuates. For a small boson occupation number, the average and the fluctuation of the ratio are enhanced.Comment: 16 pages, 5 figure

    Shannon Information Theory and Molecular Biology

    Get PDF
    The role and the contribution of Shannon Information Theory to the development of Molecular Biology has been the object of stimulating debates during the last thirty years. This seems to be connected with some semantic charms associated with the use of the word \u201cinformation\u201d in the biological context. Furthermore information itself, if viewed in a broader perspective, is far from being completely defined in a fashion that overcomes the technical level at which the classical Information Theory has been conceived. This review aims at building on the acknowledged contribution of Shannon Information Theory to Molecular Biology, so as to discover if it is only a technical tool to analyze DNA and proteinic sequences, or if it can rise, at least in perspective, to a higher role that exerts an influence on the construction of a suitable model for handling the genetic information in Molecular Biology
    corecore