94 research outputs found
Low-energy photon-photon collisions to two loops revisited
In view of ongoing experimental activities to determine the pion
polarizabilities, we have started to recalculate the available two-loop
expressions in the framework of chiral perturbation theory, because they have
never been checked before. We make use of the chiral Lagrangian at order p^6
now available, and of improved techniques to evaluate the two-loop diagrams.
Here, we present the result for the neutral pions. The cross section for the
reaction gamma+gamma->pi0+pi0 agrees with the earlier calculation within a
fraction of a percent. We present analytic results for the dipole and
quadrupole polarizabilities, and compare the latter with a recent evaluation
from data on gamma+gamma->pi0+pi0.Comment: 28 pages, 7-eps figures, 1 tabl
Kullback-Leibler and Renormalized Entropy: Applications to EEGs of Epilepsy Patients
Recently, renormalized entropy was proposed as a novel measure of relative
entropy (P. Saparin et al., Chaos, Solitons & Fractals 4, 1907 (1994)) and
applied to several physiological time sequences, including EEGs of patients
with epilepsy. We show here that this measure is just a modified
Kullback-Leibler (K-L) relative entropy, and it gives similar numerical results
to the standard K-L entropy. The latter better distinguishes frequency contents
of e.g. seizure and background EEGs than renormalized entropy. We thus propose
that renormalized entropy might not be as useful as claimed by its proponents.
In passing we also make some critical remarks about the implementation of these
methods.Comment: 15 pages, 4 Postscript figures. Submitted to Phys. Rev. E, 199
Compton scattering on the nucleon at intermediate energies and polarizabilities in a microscopic model
A microscopic calculation of Compton scattering on the nucleon is presented
which encompasses the lowest energies -- yielding nucleon polarizabilities --
and extends to energies of the order of 600 MeV. We have used the covariant
"Dressed K-Matrix Model" obeying the symmetry properties which are appropriate
in the different energy regimes. In particular, crossing symmetry, gauge
invariance and unitarity are satisfied. The extent of violation of analyticity
(causality) is used as an expansion parameter.Comment: 35 pages, 15 figures, using REVTeX. Modified version to be published
in Phys. Rev. C, more extensive comparison with data for Compton scattering,
all results unchange
Radiative decays of decuplet hyperons
We calculate the radiative decay widths of decuplet hyperons in a chiral
constituent quark model including electromagnetic exchange currents between
quarks. Exchange currents contribute significantly to the E2 transition
amplitude, while they largely cancel for the M1 transition amplitude.
Strangeness suppression of the radiative hyperon decays is found to be weakened
by exchange currents. Differences and similarities between our results and
other recent model predictions are discussed.Comment: 11 pages, 1 eps figure, revtex, accepted for publication in Phys.
Rev.
Problems with Extraction of the Nucleon to Delta(1232) Photonic Amplitudes
We investigate the model dependence and the importance of choice of database
in extracting the {\it physical} nucleon-Delta(1232) electromagnetic transition
amplitudes, of interest to QCD and baryon structure, from the pion
photoproduction observables. The model dependence is found to be much smaller
than the range of values obtained when different datasets are fitted. In
addition, some inconsistencies in the current database are discovered, and
their affect on the extracted transition amplitudes is discussed.Comment: Revtex, 2 figs., submitted to PR
Predictive powers of chiral perturbation theory in Compton scattering off protons
We study low-energy nucleon Compton scattering in the framework of baryon
chiral perturbation theory (BPT) with pion, nucleon, and (1232)
degrees of freedom, up to and including the next-to-next-to-leading order
(NNLO). We include the effects of order , and , with
MeV the -resonance excitation energy. These are
all "predictive" powers in the sense that no unknown low-energy constants enter
until at least one order higher (i.e, ). Estimating the theoretical
uncertainty on the basis of natural size for effects, we find that
uncertainty of such a NNLO result is comparable to the uncertainty of the
present experimental data for low-energy Compton scattering. We find an
excellent agreement with the experimental cross section data up to at least the
pion-production threshold. Nevertheless, for the proton's magnetic
polarizability we obtain a value of fm, in
significant disagreement with the current PDG value. Unlike the previous
PT studies of Compton scattering, we perform the calculations in a
manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB)
expansion. The difference between the lowest order HBPT and BPT
results for polarizabilities is found to be appreciable. We discuss the chiral
behavior of proton polarizabilities in both HBPT and BPT with the
hope to confront it with lattice QCD calculations in a near future. In studying
some of the polarized observables, we identify the regime where their naive
low-energy expansion begins to break down, thus addressing the forthcoming
precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ
Baryon Octet to Decuplet Electromagnetic Transitions
The electromagnetic transition moments of the -flavor baryon octet to
decuplet are examined within a lattice simulation of quenched QCD. The magnetic
transition moment for the channel is found to be in
agreement with recent experimental analyses. The lattice results indicate
. In terms of the Particle Data Group
convention, GeV for
transitions. Lattice predictions for the hyperon transition moments agree
with those of a simple quark model. However the manner in which the quarks
contribute to the transition moments in the lattice simulation is different
from that anticipated by quark model calculations. The scalar quadrupole form
factor exhibits a behavior consistent with previous multipole analyses. The
multipole transition moment ratios are also determined. The lattice
results suggest \% for
transitions. Of particular interest are significant
nonvanishing signals for the ratio in and
electromagnetic transitions.Comment: PostScript file, 37 pages including figures. U. MD PP #93-085, U. KY
PP #UK/92-09, TRIUMF PP #TRI-PP-92-12
Full counting statistics of information content
We review connections between the cumulant generating function of full
counting statistics of particle number and the R\'enyi entanglement entropy. We
calculate these quantities based on the fermionic and bosonic path-integral
defined on multiple Keldysh contours. We relate the R\'enyi entropy with the
information generating function, from which the probability distribution
function of self-information is obtained in the nonequilibrium steady state. By
exploiting the distribution, we analyze the information content carried by a
single bosonic particle through a narrow-band quantum communication channel.
The ratio of the self-information content to the number of bosons fluctuates.
For a small boson occupation number, the average and the fluctuation of the
ratio are enhanced.Comment: 16 pages, 5 figure
Shannon Information Theory and Molecular Biology
The role and the contribution of Shannon Information Theory to the development of Molecular Biology has been the object of stimulating debates during the last thirty years. This seems to be connected with some semantic charms associated with the use of the word \u201cinformation\u201d in the biological context. Furthermore information itself, if viewed in a broader perspective, is far from being completely defined in a fashion that overcomes the technical level at which the classical Information Theory has been conceived. This review aims at building on the acknowledged contribution of Shannon Information Theory to Molecular Biology, so as to discover if it is only a technical tool to analyze DNA and proteinic sequences, or if it can rise, at least in perspective, to a higher role that exerts an influence on the construction of a suitable model for handling the genetic information in Molecular Biology
- …