1,728 research outputs found
Canonical interpretation of and in the family
Inspired by the new resonance , we calculate the masses and
two-body OZI-allowed strong decays of the higher vector bottomonium sates
within both screened and linear potential models. We discuss the possibilities
of and as mixed states via the mixing. Our
results suggest that and might be explained as
mixed states between - and -wave vector states. The
and resonances may correspond to the mixed states
dominated by the - and -wave components, respectively. The mass and the
strong decay behaviors of the resonance are consistent with
the assignment of the state in the potential models.Comment: 9 pages, 4 figures. More discussions are adde
Fish species-specific TRIM gene FTRCA1 negatively regulates interferon response through attenuating IRF7 transcription
In mammals and fish, emerging evidence highlights that TRIM family members play important roles in the interferon (IFN) antiviral immune response. Fish TRIM family has undergone an unprecedented expansion leading to generation of finTRIM subfamily, which is exclusively specific to fish. Our recent results have shown that FTRCA1 (finTRIM C. auratus 1) is likely a fish species-specific finTRIM member in crucian carp C. auratus and acts as a negative modulator to downregulate fish IFN response by autophage-lysosomal degradation of protein kinase TBK1. In the present study, we found that FTRCA1 also impedes the activation of crucian carp IFN promoter by IRF7 but not by IRF3. Mechanistically, FTRCA1 attenuates IRF7 transcription levels likely due to enhanced decay of IRF7 mRNA, leading to reduced IRF7 protein levels and subsequently reduced fish IFN expression. E3 ligase activity is required for FTRCA1 to negatively regulate IRF7-mediated IFN response, because ligase-inactive mutants and the RING-deleted mutant of FTRCA1 lose the ability to block the activation of crucian carp IFN promoter by IRF7. These results together indicate that FTRCA1 is a multifaceted modulator to target different signaling factors for shaping fish IFN response in crucian carp.</p
Birman-Wenzl-Murakami Algebra and the Topological Basis
In this paper, we use entangled states to construct 9x9-matrix
representations of Temperley-Lieb algebra (TLA), then a family of 9x9-matrix
representations of Birman-Wenzl-Murakami algebra (BWMA) have been presented.
Based on which, three topological basis states have been found. And we apply
topological basis states to recast nine-dimensional BWMA into its
three-dimensional counterpart. Finally, we find the topological basis states
are spin singlet states in special case.Comment: 11pages, 1 figur
An miR-200 Cluster on Chromosome 23 Regulates Sperm Motility in Zebrafish
Besides its well-documented roles in cell proliferation, apoptosis, and carcinogenesis, the function of the p53-microRNA axis has been recently revealed in the reproductive system. Recent studies indicated that miR-200 family members are dysregulated in nonobstructive azoospermia patients, whereas their functions remain poorly documented. The aim of this study was to investigate the function of the miR-200 family on zebrafish testis development and sperm activity. There was no substantial difference in testis morphology and histology between wild-type (WT) and knockout zebrafish with deletion of miR-200 cluster on chromosome 6 (chr6-miR-200-KO) or on chromosome 23 (chr23-miR-200-KO). Interestingly, compared with WT zebrafish, the chr6-miR-200-KO zebrafish had no difference on sperm motility, whereas chr23-miR-200-KO zebrafish showed significantly improved sperm motility. Consistently, ectopic expression of miR-429a, miR-200a, and miR-200b, which are located in the miR-200 cluster on chromosome 23, significantly reduced motility traits of sperm. Several sperm motility-related genes, such as amh, wt1a, and srd5a2b have been confirmed as direct targets of miR-200s on chr23. 17a-ethynylestradiol (EE2) exposure resulted in upregulated expression of p53 and miR-429a in testis and impairment of sperm motility. Strikingly, in p53 mutant zebrafish testis, the expression levels of miR-200s on chr23 were significantly reduced and accompanied by a stimulation of sperm motility. Moreover, the upregulation of miR-429a associated with EE2 treatment was abolished in testis with p53 mutation. And the impairment of sperm activity by EE2 treatment was also eliminated when p53 was mutated. Together, our results reveal that miR-200 cluster on chromosome 23 controls sperm motility in a p53-dependent manner.</p
Newton-Cartan Gravity and Torsion
We compare the gauging of the Bargmann algebra, for the case of arbitrary
torsion, with the result that one obtains from a null-reduction of General
Relativity. Whereas the two procedures lead to the same result for
Newton-Cartan geometry with arbitrary torsion, the null-reduction of the
Einstein equations necessarily leads to Newton-Cartan gravity with zero
torsion. We show, for three space-time dimensions, how Newton-Cartan gravity
with arbitrary torsion can be obtained by starting from a Schroedinger field
theory with dynamical exponent z=2 for a complex compensating scalar and next
coupling this field theory to a z=2 Schroedinger geometry with arbitrary
torsion. The latter theory can be obtained from either a gauging of the
Schroedinger algebra, for arbitrary torsion, or from a null-reduction of
conformal gravity.Comment: 21 page
Enhancement of polar phases in PVDF by forming PVDF/SiC nanowire composite
Different contents of silicon carbide (SiC) nanowires were mixed with Poly(vinylidene fluoride) (PVDF) to facilitate the polar phase crystallization. It was shown that the annealing temperature and SiC content affected on the phase and crystalline structures of PVDF/SiC samples. Furthermore, the addition of SiC nanowire enhanced the transformation of non-polar α phase to polar phases and increased the relative fraction of β phase in PVDF. Due to the nucleating agent mechanism of SiC nanowires, the ion-dipole interaction between the negatively charged surface of SiC nanowires and the positive CH2 groups in PVDF facilitated the formation of polar phases in PVDF
The Effects of Rape Residue Mulching on Net Global Warming Potential and Greenhouse Gas Intensity from No-Tillage Paddy Fields
A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha−1) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0–20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha−1 season−1 to 1654 kg C ha−1 season−1 than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9–30% but significantly decreased net GWP by 33–71% and GHGI by 35–72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China
- …