4,842 research outputs found
Long-Term Human Video Generation of Multiple Futures Using Poses
Predicting future human behavior from an input human video is a useful task
for applications such as autonomous driving and robotics. While most previous
works predict a single future, multiple futures with different behavior can
potentially occur. Moreover, if the predicted future is too short (e.g., less
than one second), it may not be fully usable by a human or other systems. In
this paper, we propose a novel method for future human pose prediction capable
of predicting multiple long-term futures. This makes the predictions more
suitable for real applications. Also, from the input video and the predicted
human behavior, we generate future videos. First, from an input human video, we
generate sequences of future human poses (i.e., the image coordinates of their
body-joints) via adversarial learning. Adversarial learning suffers from mode
collapse, which makes it difficult to generate a variety of multiple poses. We
solve this problem by utilizing two additional inputs to the generator to make
the outputs diverse, namely, a latent code (to reflect various behaviors) and
an attraction point (to reflect various trajectories). In addition, we generate
long-term future human poses using a novel approach based on unidimensional
convolutional neural networks. Last, we generate an output video based on the
generated poses for visualization. We evaluate the generated future poses and
videos using three criteria (i.e., realism, diversity and accuracy), and show
that our proposed method outperforms other state-of-the-art works
High sensitivity microwave detection using a magnetic tunnel junction in the absence of an external applied magnetic field
In the absence of any external applied magnetic field, we have found that a
magnetic tunnel junction (MTJ) can produce a significant output direct voltage
under microwave radiation at frequencies, which are far from the ferromagnetic
resonance condition, and this voltage signal can be increase by at least an
order of magnitude by applying a direct current bias. The enhancement of the
microwave detection can be explained by the nonlinear resistance/conductance of
the MTJs. Our estimation suggests that optimized MTJs should achieve
sensitivities for non-resonant broadband microwave detection of about 5,000
mV/mW
Resonances in Ferromagnetic Gratings Detected by Microwave Photoconductivity
We investigate the impact of microwave excited spin excitations on the DC
charge transport in a ferromagnetic (FM) grating. We observe both resonant and
nonresonant microwave photoresistance. Resonant features are identified as the
ferromagnetic resonance (FMR) and ferromagnetic antiresonance (FMAR). A
macroscopic model based on Maxwell and Landau-Lifschitz equations reveals the
macroscopic nature of the FMAR. The experimental approach and results provide
new insight in the interplay between photonic, spintronic, and charge effects
in FM microstructures.Comment: 4 pages, 4 figure
The Integrated Sachs-Wolfe Effect in Time Varying Vacuum Model
The integrated Sachs-Wolfe (ISW) effect is an important implication for dark
energy. In this paper, we have calculated the power spectrum of the ISW effect
in the time varying vacuum cosmological model, where the model parameter
is obtained by the observational constraint of the growth rate.
It's found that the source of the ISW effect is not only affected by the
different evolutions of the Hubble function and the dimensionless matter
density , but also by the different growth function , all
of which are changed due to the presence of matter production term in the time
varying vacuum model. However, the difference of the ISW effect in
model and model is lessened to
a certain extent due to the integration from the time of last scattering to the
present. It's implied that the observations of the galaxies with high redshift
are required to distinguish the two models
- …