3,918 research outputs found

    Simple Rate-1/3 Convolutional and Tail-Biting Quantum Error-Correcting Codes

    Full text link
    Simple rate-1/3 single-error-correcting unrestricted and CSS-type quantum convolutional codes are constructed from classical self-orthogonal \F_4-linear and \F_2-linear convolutional codes, respectively. These quantum convolutional codes have higher rate than comparable quantum block codes or previous quantum convolutional codes, and are simple to decode. A block single-error-correcting [9, 3, 3] tail-biting code is derived from the unrestricted convolutional code, and similarly a [15, 5, 3] CSS-type block code from the CSS-type convolutional code.Comment: 5 pages; to appear in Proceedings of 2005 IEEE International Symposium on Information Theor

    Convolutional and tail-biting quantum error-correcting codes

    Full text link
    Rate-(n-2)/n unrestricted and CSS-type quantum convolutional codes with up to 4096 states and minimum distances up to 10 are constructed as stabilizer codes from classical self-orthogonal rate-1/n F_4-linear and binary linear convolutional codes, respectively. These codes generally have higher rate and less decoding complexity than comparable quantum block codes or previous quantum convolutional codes. Rate-(n-2)/n block stabilizer codes with the same rate and error-correction capability and essentially the same decoding algorithms are derived from these convolutional codes via tail-biting.Comment: 30 pages. Submitted to IEEE Transactions on Information Theory. Minor revisions after first round of review

    Structured optical receivers to attain superadditive capacity and the Holevo limit

    Full text link
    When classical information is sent over a quantum channel, attaining the ultimate limit to channel capacity requires the receiver to make joint measurements over long codeword blocks. For a pure-state channel, we construct a receiver that can attain the ultimate capacity by applying a single-shot unitary transformation on the received quantum codeword followed by simultaneous (but separable) projective measurements on the single-modulation-symbol state spaces. We study the ultimate limits of photon-information-efficient communications on a lossy bosonic channel. Based on our general results for the pure-state quantum channel, we show some of the first concrete examples of codes and structured joint-detection optical receivers that can achieve fundamentally higher (superadditive) channel capacity than conventional receivers that detect each modulation symbol individually.Comment: 4 pages, 4 figure

    Regular and Singular Pulse and Front Solutions and Possible Isochronous Behavior in the Short-Pulse Equation: Phase-Plane, Multi-Infinite Series and Variational Approaches

    Full text link
    In this paper we employ three recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a family of so-called short-pulse equations (SPE). A recent, novel application of phase-plane analysis is first employed to show the existence of breaking kink wave solutions in certain parameter regimes. Secondly, smooth traveling waves are derived using a recent technique to derive convergent multi-infinite series solutions for the homoclinic (heteroclinic) orbits of the traveling-wave equations for the SPE equation, as well as for its generalized version with arbitrary coefficients. These correspond to pulse (kink or shock) solutions respectively of the original PDEs. Unlike the majority of unaccelerated convergent series, high accuracy is attained with relatively few terms. And finally, variational methods are employed to generate families of both regular and embedded solitary wave solutions for the SPE PDE. The technique for obtaining the embedded solitons incorporates several recent generalizations of the usual variational technique and it is thus topical in itself. One unusual feature of the solitary waves derived here is that we are able to obtain them in analytical form (within the assumed ansatz for the trial functions). Thus, a direct error analysis is performed, showing the accuracy of the resulting solitary waves. Given the importance of solitary wave solutions in wave dynamics and information propagation in nonlinear PDEs, as well as the fact that not much is known about solutions of the family of generalized SPE equations considered here, the results obtained are both new and timely.Comment: accepted for publication in Communications in Nonlinear Science and Numerical Simulatio

    Symmetric M-ary phase discrimination using quantum-optical probe states

    Full text link
    We present a theoretical study of minimum error probability discrimination, using quantum- optical probe states, of M optical phase shifts situated symmetrically on the unit circle. We assume ideal lossless conditions and full freedom for implementing quantum measurements and for probe state selection, subject only to a constraint on the average energy, i.e., photon number. In particular, the probe state is allowed to have any number of signal and ancillary modes, and to be pure or mixed. Our results are based on a simple criterion that partitions the set of pure probe states into equivalence classes with the same error probability performance. Under an energy constraint, we find the explicit form of the state that minimizes the error probability. This state is an unentangled but nonclassical single-mode state. The error performance of the optimal state is compared with several standard states in quantum optics. We also show that discrimination with zero error is possible only beyond a threshold energy of (M - 1)/2. For the M = 2 case, we show that the optimum performance is readily demonstrable with current technology. While transmission loss and detector inefficiencies lead to a nonzero erasure probability, the error rate conditional on no erasure is shown to remain the same as the optimal lossless error rate.Comment: 13 pages, 10 figure
    • …
    corecore