33 research outputs found

    Effect of a maternal cafeteria diet on the fatty acid composition of milk and offspring red blood cells

    Get PDF
    Abstract not availableM.A. Vithayathil, J.R. Gugusheff, R.A. Gibson, Z.Y. Ong, B.S. Muhlhausle

    The early origins of food preferences: targeting the critical windows of development

    Get PDF
    The nutritional environment to which an individual is exposed during the perinatal period plays a crucial role in determining his or her future metabolic health outcomes. Studies in rodent models have demonstrated that excess maternal intake of high-fat and/or high-sugar "junk foods" during pregnancy and lactation can alter the development of the central reward pathway, particularly the opioid and dopamine systems, and program an increased preference for junk foods in the offspring. More recently, there have been attempts to define the critical windows of development during which the opioid and dopamine systems within the reward pathway are most susceptible to alteration and to determine whether it is possible to reverse these effects through nutritional interventions applied later in development. This review discusses the progress made to date in these areas, highlights the apparent importance of sex in determining these effects, and considers the potential implications of the findings from rodent models in the human context.Jessica Rose Gugusheff, Zhi Yi Ong, and Beverly Sara Muhlhausle

    Perinatal overnutrition and the programming of food preferences: pathways and mechanisms

    Get PDF
    One of the major contributing factors to the continuous rise in obesity rates is the increase in caloric intake, which is driven to a large extent by the ease of access and availability of palatable high-fat, high-sugar ‘junk foods’. It is also clear that some individuals are more likely to overindulge in these foods than others; however, the factors that determine an individual's susceptibility towards the overconsumption of palatable foods are not well understood. There is growing evidence that an increased preference for these foods may have its origins early in life. Recent work from our group and others has reported that in utero and early life exposure to these palatable foods in rodents increased the offspring's preference towards foods high in fat and sugar. One of the potential mechanisms underlying the programming of food preferences is the altered development of the mesolimbic reward system, a system that plays an important role in driving palatable food intake in adults. The aim of this review is to explore the current knowledge of the programming of food preferences, a relatively new and emerging area in the DOHAD field, with a particular focus on maternal overnutrition, the development of the mesolimbic reward system and the biological mechanisms which may account for the early origins of an increased preference for palatable foods.Z. Y. Ong, J. R. Gugusheff and B. S. Muhlhausle

    A maternal 'junk-food' diet reduces sensitivity to the opioid antagonist naloxone in offspring postweaning

    Get PDF
    Perinatal exposure to a maternal “junk-food” diet has been demonstrated to increase the preference for palatable diets in adult offspring. We aimed to determine whether this increased preference could be attributed to changes in μ-opioid receptor expression within the mesolimbic reward pathway. We report here that mRNA expression of the μ-opioid receptor in the ventral tegmental area (VTA) at weaning was 1.4-fold (males) and 1.9-fold (females) lower in offspring of junk-food (JF)-fed rat dams than in offspring of dams fed a standard rodent diet (control) (P<0.05). Administration of the opioid antagonist naloxone to offspring given a palatable diet postweaning significantly reduced fat intake in control offspring (males: 7.7±0.7 vs. 5.4±0.6 g/kg/d; females: 6.9±0.3 vs. 3.9±0.5g/kg/d; P<0.05), but not in male JF offspring (8.6±0.6 vs. 7.1±0.5g/kg/d) and was less effective at reducing fat intake in JF females (42.2±6.0 vs. 23.1±4.1% reduction, P<0.05). Similar findings were observed for total energy intake. Naloxone treatment did not affect intake of standard rodent feed in control or JF offspring. These findings suggest that exposure to a maternal junk-food diet results in early desensitization of the opioid system which may explain the increased preference for junk food in these offspring.—Gugusheff, J. R., Ong, Z. Y., Muhlhausler, B. S. A maternal “junk-food” diet reduces sensitivity to the opioid antagonist naloxone in offspring postweaning.Jessica R. Gugusheff, Zhi Yi Ong and Beverly S. Muhlhausle

    Pregnancy, obesity and insulin resistance: maternal overnutrition and the target windows of fetal development

    Get PDF
    A substantial body of literature has demonstrated that the nutritional environment an individual experiences before birth or in early infancy is a key determinant of their health outcomes across the life course. This concept, the developmental origins of health and disease (DOHaD) hypothesis, was initially focused on the adverse consequences of exposure to a suboptimal nutrient supply and provided evidence that maternal undernutrition, fetal growth restriction, and low birth weight were associated with heightened risk of central adiposity, insulin resistance, and cardiovascular disease. More recently, the epidemic rise in the incidence of maternal obesity has seen the attention of the DOHaD field turn toward identifying the impact on the offspring of exposure to an excess nutrient supply in early life. The association between maternal obesity and increased risk of obesity in the offspring has been documented in human populations worldwide, and animal models have provided critical insights into the biological mechanisms that drive this relationship. This review will discuss the important roles that programming of the adipocyte and programming of the central neural networks which control appetite and reward play in the early life programming of metabolic disease by maternal overnutrition. It will also highlight the important research gaps and challenges that remain to be addressed and provide a personal perspective on where the field should be heading in the coming 5-10 years.Beverly S. Muhlhausler, Jessica R. Gugusheff, Zhi Yi Ong and Mini A. Vithayathi

    The effects of prenatal exposure to a 'junk food' diet on offspring food preferences and fat deposition can be mitigated by improved nutrition during lactation

    Get PDF
    Exposure to a maternal junk food (JF) diet in utero and during the suckling period has been demonstrated to increase the preference for palatable food and increase the susceptibility to diet-induced obesity in adult offspring. We aimed to determine whether the effects of prenatal exposure to JF could be ameliorated by cross-fostering offspring onto dams consuming a standard rodent chow during the suckling period. We report here that when all offspring were given free access to the JF diet for 7 weeks from 10 weeks of age, male offspring of control (C) or JF dams that were cross-fostered at birth onto JF dams (C-JF, JF-JF), exhibited higher fat (C-C: 12.3 ± 0.34 g/kg/day; C-JF: 14.7 ± 1.04 g/kg/day; JF-C: 11.5 ± 0.41 g/kg/day; JF-JF: 14.0 ± 0.44 g/kg/day; P < 0.05) and overall energy intake (C-C: 930.1 ± 18.56 kJ/kg/day; C-JF: 1029.0 ± 82.9 kJ/kg/day; JF-C: 878.3 ± 19.5 kJ/kg/day; JF-JF: 1003.4 ± 25.97 kJ/kg/day; P < 0.05) than offspring exposed to the JF diet only before birth (JF-C) or not at all (C-C). Female offspring suckled by JF dams, despite no differences in food intake, had increased fat mass as percentage of body weight (C-C: 19.9 ± 1.33%; C-JF: 22.8 ± 1.57%; JF-C: 17.4 ± 1.03%; JF-JF: 22.0 ± 1.0%; P < 0.05) after 3 weeks on the JF diet. No difference in fat mass was observed in male offspring. These findings suggest that the effects of prenatal exposure to a JF diet on food preferences in females and susceptibility to diet-induced obesity in males can be prevented by improved nutrition during the suckling period.J. R. Gugusheff, M. Vithayathil, Z. Y. Ong and B. S. Muhlhausle

    The effect of maternal and post-weaning low and high glycaemic index diets on glucose tolerance, fat deposition and hepatic function in rat offspring

    Get PDF
    First published online 10 December 2015Clinical studies have reported beneficial effects of a maternal low glycaemic index (GI) diet on pregnancy and neonatal outcomes, but the impact of the diet on the offspring in later life, and the mechanisms underlying these effects, remain unclear. In this study, Albino Wistar rats were fed either a low GI (n = 14) or high GI (n = 14) diet during pregnancy and lactation and their offspring weaned onto either the low or high GI diet. Low GI dams had better glucose tolerance (AUC[glucose], 1322 ± 55 v. 1523 ± 72 mmol min/l, P< 0.05) and a lower proportion of visceral fat (19.0 ± 2.9 v. 21.7 ± 3.8% of total body fat, P<0.05) compared to high GI dams. Female offspring of low GI dams had lower visceral adiposity (0.45 ± 0.03 v. 0.53 ± 0.03% body weight, P< 0.05) and higher glucose tolerance (AUC[glucose], 1243 ± 29 v. 1351 ± 39 mmol min/l, P<0.05) at weaning, as well as lower hepatic PI3K-p85 mRNA at 12 weeks of age. No differences in glucose tolerance or hepatic gene expression were observed in male offspring, but the male low GI offspring did have reduced hepatic lipid content at weaning. These findings suggest that consuming a low GI diet during pregnancy and lactation can improve glucose tolerance and reduce visceral adiposity in the female offspring at weaning, and may potentially produce long-term reductions in the hepatic lipogenic capacity of these offspring.J. Gugusheff, P. Sim, A. Kheng, S. Gentili, M. Al-Nussairawi, J. Brand-Miller and B. Muhlhausle
    corecore