1,904 research outputs found
Maximum black-hole spin from quasi-circular binary mergers
Black holes of mass M must have a spin angular momentum S below the Kerr
limit chi = S/M^2 < 1, but whether astrophysical black holes can attain this
limiting spin depends on their accretion history. Gas accretion from a thin
disk limits the black-hole spin to chi_gas < 0.9980 +- 0.0002, as
electromagnetic radiation from this disk with retrograde angular momentum is
preferentially absorbed by the black hole. Extrapolation of
numerical-relativity simulations of equal-mass binary black-hole mergers to
maximum initial spins suggests these mergers yield a maximum spin chi_eq <
0.95. Here we show that for smaller mass ratios q = m/M << 1, the superradiant
extraction of angular momentum from the larger black hole imposes a fundamental
limit chi_lim < 0.9979 +- 0.0001 on the final black-hole spin even in the
test-particle limit q -> 0 of binary black-hole mergers. The nearly equal
values of chi_gas and chi_lim imply that measurement of supermassive black-hole
spins cannot distinguish a black hole built by gas accretion from one assembled
by the gravitational inspiral of a disk of compact stellar remnants. We also
show how superradiant scattering alters the mass and spin predicted by models
derived from extrapolating test-particle mergers to finite mass ratios.Comment: final version accepted in PRD, new Fig.4 and discussio
On the estimation of time dependent lift of a European Starling during flapping
We study the role of unsteady lift in the context of flapping wings in birds'
flight. Both aerodynamicists and biologists attempt to address this subject,
yet it seems that the contribution of the unsteady lift still holds many open
questions. The current study deals with the estimation of unsteady aerodynamic
forces on a freely flying bird through analysis of wingbeat kinematics and near
wake flow measurements using time resolved particle image velocimetry. The
aerodynamic forces are obtained through unsteady thin airfoil theory and lift
calculation using the momentum equation for viscous flows. The unsteady lift is
comprised of circulatory and non-circulatory components. Both are presented
over wingbeat cycles. Using long sampling data, several wingbeat cycles have
been analyzed in order to cover the downstroke and upstroke phases. It appears
that the lift varies over the wingbeat cycle emphasizing its contribution to
the total lift and its role in power estimations. It is suggested that the
circulatory lift component cannot assumed to be negligible and should be
considered when estimating lift or power of birds in flapping motion
Metabolic profile of long-distance migratory flight and stopover in a shorebird
Migrating birds often complete long non-stop flights during which body energy stores exclusively support energetic demands. The metabolic correlates of such long-distance travel in free-living migrants are as yet poorly studied. Bar-tailed godwits, Limosa lapponica taymyrensis, undertake a 4500 km flight to their single spring stopover site and thus provide an excellent model in which to determine the energy fuels associated with endurance travel. To this end, we evaluated plasma concentrations of six key metabolites in arriving godwits caught immediately upon landing near their stopover site. Initial metabolite levels were compared with levels after 5 h of inactive rest to determine how flight per se affects energy metabolism. Birds refuelling on the stopover site were also examined. Arriving godwits displayed elevated plasma free fatty acids, glycerol and butyrate, confirming the importance of lipid fuel in the support of extended migratory activity. Furthermore, elevated plasma triglycerides in these birds suggest that fatty acid provisioning is facilitated through hepatic synthesis and release of neutral lipids, as previously hypothesized for small migrants with high mass-specific metabolic rates. Finally, elevations in plasma uric acid suggest that protein breakdown contributes to the support of long-distance movement, to possibly maintain citric acid cycle intermediates, gluconeogenesis and/or water balance
- …