1,257 research outputs found

    Impact of cross-saturation in sensorless control of transverse-laminated synchronous reluctance motors

    Get PDF
    Synchronous reluctance (SyR) motors are well suited to a zero-speed sensorless control, because of their inherently salient behavior. However, the cross-saturation effect can lead to large errors on the position estimate, which is based on the differential anisotropy. These errors are quantified in the paper, as a function of the working point. The so-calculated errors are then found in good accordance with the purposely obtained experimental measurements. The impact of the amplitude of the carrier voltage is then pointed out, leading to a mixed (carrier injection plus electromotive force estimation) control scheme. Last, a scheme of this type is used, with a commercial transverse-laminated SyR motor. The robustness against cross-saturation is shown, in practice, and the obtained drive performance is pointed out proving to be effective for a general-purpose applicatio

    Cross-Saturation Effects in IPM Motors and Related Impact on Sensorless Control

    Get PDF
    Permanent-magnet-assisted synchronous reluctance motors are well suited to zero-speed sensorless control because of their inherently salient behavior. However, the cross-saturation effect can lead to large errors on the position estimate, which is based on the differential anisotropy. These errors are quantified in this paper as a function of the working point. The errors that are calculated are then found to be in good accordance with the purposely obtained experimental measurement

    Core Losses and Torque Ripple in IPM Machines: Dedicated Modeling and Design Trade Off

    Get PDF
    The proper combination of stator and rotor slot numbers is pursued in the design of interior permanent-magnet (IPM) motors with wide constant-power speed range. At high speed, in the flux-weakening region, the arising of stator and rotor iron losses due to magnetomotive-force (MMF) spatial harmonics limits the IPM motor performance. Torque ripple is another problem for this kind of machines, both at low and high speed. The numbers of stator slots and rotor equivalent slots have a major impact on both the loss and ripple aspects. A simplified model is proposed here in order to evaluate both problems with a general approach and point out the possible design tradeoff. With respect to previous models in the literature, both stator and rotor losses are included, and a more comprehensive approach is followed in the description of the rotor MMF harmonics. The model's effectiveness is tested through finite element analysis simulations and some experimental results. The proposed approach is useful for the selection of the IPM machine structure according to the specific requirements of the applicatio

    Comparison of Induction and PM Synchronous motor drives for EV application including design examples

    Get PDF
    Three different motor drives for electric traction are compared, in terms of output power and efficiency at the same stack dimensions and inverter size. Induction motor (IM), surface-mounted permanent-magnet (PM) (SPM), and interior PM (IPM) synchronous motor drives are investigated, with reference to a common vehicle specification. The IM is penalized by the cage loss, but it is less expensive and inherently safe in case of inverter unwilled turnoff due to natural de-excitation. The SPM motor has a simple construction and shorter end connections, but it is penalized by eddy-current loss at high speed, has a very limited transient overload power, and has a high uncontrolled generator voltage. The IPM motor shows the better performance compromise, but it might be more complicated to be manufactured. Analytical relationships are first introduced and then validated on three example designs and finite element calculated, accounting for core saturation, harmonic losses, the effects of skewing, and operating temperature. The merits and limitations of the three solutions are quantified comprehensively and summarized by the calculation of the energy consumption over the standard New European Driving Cycl

    Performance comparison between Surface Mounted and Interior PM motor drives for Electric Vehicle application

    Get PDF
    Electric Vehicles make use of permanent magnet synchronous traction motors for their high torque density and efficiency. A comparison between interior permanent magnet (IPM) and surface mounted permanent magnet (SPM) motors is carried out, in terms of performance at given inverter ratings. The results of the analysis, based on a simplified analytical model and confirmed by FE analysis, show that the two motors have similar rated power but that the SPM motor has barely no overload capability, independently of the available inverter current. Moreover the loss behavior of the two motors is rather different in the various operating ranges with the SPM one better at low speed due to short end connections but penalized at high speed by the need of a significant de-excitation current. The analysis is validated through finite-element simulation of two actual motor design

    Position-sensorless control of permanent-magnet-assisted synchronous reluctance motor

    Get PDF
    The sensorless control of permanent-magnet-assisted synchronous reluctance (PMASR) motors is investigated, in order to conjugate the advantages of the sensorless control with full exploitation of the allowed operating area, for a given inverter. An additional pulsating flux is injected in the d-axis direction at low and zero speed, while it is dropped out, at large speed, to save voltage and additional loss. A flux-observer-based control scheme is used, which includes an accurate knowledge of the motor magnetic behavior. This leads, in general, to good robustness against load variations, by counteracting the magnetic cross saturation effect. Moreover, it allows an easy and effective correspondence between the wanted torque and flux and the set values of the chosen control variables, that is d-axis flux and q-axis current. Experimental verification of the proposed method is given, both steady-state and dynamic performance are outlined. A prototype PMASR motor will be used to this aim, as part of a purposely assembled prototype drive, for light traction application (electric scooter

    Permanent Magnet minimization in PM-Assisted Synchronous Reluctance motors for wide speed range

    Get PDF
    This paper presents a technique to modify the rotor lamination of a permanent-magnet-assisted synchronous reluctance motor, in order to reduce the magnet volume with no side effect on performance. A closed-form analysis, which is based on a lumped parameter model, points out that the magnet quantity can be minimized with a significant saving of material volume and cost. At a second stage, the risk of demagnetization is evaluated since the minimized magnets are thinner than the starting ones and work on lower load lines in their respective B-H planes. A feasible drawing is analytically defined, which is robust against demagnetization at overload, showing that the saving of magnet quantity depends on the maximum current overload and can be significant. The theoretical formulation is validated with finite-element analysis and experiments on a prototype machin

    Ferrite Assisted Synchronous Reluctance Machines: a General Approach

    Get PDF
    A general approach to the design of high performance ferrite-assisted synchronous reluctance motors is presented. Reference is made to a rectified rotor structure, with multiple flux barriers, designed to optimize the performance and the exploitation of the PM material. The key design issue of de-magnetization is analytically investigated, pointing out the maximum allowed current loading, depending on temperature and machine dimensions. Such current limit is then compared with the one imposed by the thermal constraint. The analysis shows that low and medium size machines tend to be robust against demagnetization, while larger machines are more at risk. The theoretical analysis is confirmed by finite-elements via an example machine desig
    corecore