146 research outputs found
Real-time and Sub-wavelength Ultrafast Coherent Diffraction Imaging in the Extreme Ultraviolet
Coherent Diffraction Imaging is a technique to study matter with nanometer-scale spatial resolution based on coherent illumination of the sample with hard X-ray, soft X-ray or extreme ultraviolet light delivered from synchrotrons or more recently X-ray Free-Electron Lasers. This robust technique simultaneously allows quantitative amplitude and phase contrast imaging. Laser-driven high harmonic generation XUV-sources allow table-top realizations. However, the low conversion efficiency of lab-based sources imposes either a large scale laser system or long exposure times, preventing many applications. Here we present a lensless imaging experiment combining a high numerical aperture (NA=0.8) setup with a high average power fibre laser driven high harmonic source. The high flux and narrow-band harmonic line at 33.2 nm enables either sub-wavelength spatial resolution close to the Abbe limit (Delta r=0.8 lambda) for long exposure time, or sub-70 nm imaging in less than one second. The unprecedented high spatial resolution, compactness of the setup together with the real-time capability paves the way for a plethora of applications in fundamental and life sciences
Tabletop nonlinear optics in the 100-eV spectral region
Nonlinear light-matter interactions in the extreme ultraviolet (XUV) are a prerequisite to perform XUV-pump/XUV-probe spectroscopy of core electrons. Such interactions are now routinely investigated at free-electron laser (FEL) facilities. Yet, electron dynamics are often too fast to be captured with the femtosecond resolution of state-of-the-art FELs. Attosecond pulses from laser-driven XUV-sources offer the necessary temporal resolution. However, intense attosecond pulses supporting nonlinear processes have only been available for photon energy below 50 eV, precluding XUV-pump/XUV-probe investigation of typical inner-shell processes. Here, we surpass this limitation by demonstrating two-photon absorption from inner electronic shells of xenon at photon energies around 93 eV and 115 eV. This advance opens the door for attosecond real-time observation of nonlinear electron dynamics deep inside atoms
Water-Window X-Ray Pulses from a Laser-Plasma Driven Undulator
Femtosecond (fs) x-ray pulses are a key tool to study the structure and dynamics of matter on its natural length and time scale. To complement radio-frequency accelerator-based large-scale facilities, novel laser-based mechanisms hold promise for compact laboratory-scale x-ray sources. Laser-plasma driven undulator radiation in particular offers high peak-brightness, optically synchronized few-fs pulses reaching into the few-nanometer (nm) regime. To date, however, few experiments have successfully demonstrated plasma-driven undulator radiation. Those that have, typically operated at single and comparably long wavelengths. Here we demonstrate plasma-driven undulator radiation with octave-spanning tuneability at discrete wavelengths reaching from 13nm to 4nm. Studying spontaneous undulator radiation is an important step towards a plasma-driven free-electron laser. Our specific setup creates a photon pulse, which closely resembles the plasma electron bunch length and charge profile and thus might enable novel methods to characterize the longitudinal electron phase space
Recommended from our members
SANTIA: a Matlab-based open-source toolbox for artifact detection and removal from extracellular neuronal signals
Neuronal signals generally represent activation of the neuronal networks and give insights into brain functionalities. They are considered as fingerprints of actions and their processing across different structures of the brain. These recordings generate a large volume of data that are susceptible to noise and artifacts. Therefore, the review of these data to ensure high quality by automatically detecting and removing the artifacts is imperative. Toward this aim, this work proposes a custom-developed automatic artifact removal toolbox named, SANTIA (SigMate Advanced: a Novel Tool for Identification of Artifacts in Neuronal Signals). Developed in Matlab, SANTIA is an open-source toolbox that applies neural network-based machine learning techniques to label and train models to detect artifacts from the invasive neuronal signals known as local field potentials
- …