43 research outputs found
A 23 kDa membrane glycoprotein bearing NeuNAcα2-3Galβ1-3GalNAc O-linked carbohydrate chains acts as a receptor for Streptococcus sanguis OMZ 9 on human buccal epithelial cells
Streptococcus sanguis colonizes several human oral surfaces, including both hard and soft tissues. Large salivary mucin like glycoproteins bearing sialic acid residues are known to bind various S.sanguis strains. However, the molecular basis for the adhesion of S.sanguis to human buccal epithelial cells (HBEC) has not been established. The present study shows that S.sanguis OMZ 9 binds to exfoliated HBEC in a sialic acid-sensitive manner. The desialylation of such cells invariably abolhhes adhesion of S.sanguis OMZ 9 to the cell surface. A soluble glycopeptide bearing short sialylated O-linked carbohydrate chains behaves as a potent inhibitor of the attachment of S.sanguis OMZ 9 to exfoliated HBEC. The resialylation of desialylated HBEC with CMP-sialic acid and Galβ1,3GalNAc α2,3-sialyltransferase specific for O-glycans restores the receptor function for S.sanguis OMZ 9, whereas a similar cell resialylation with the Galβ1,4GlcNAc α2,6-sialyltmnsferase specific for N-glycans is without effect. Finally, ceinyl-sialic acid as a substrate yeilds exfoliated HBFC bearing flurescence as the catalyst. The latter finding demonstrates that this 23kDa cell surface glycoprotein bears NeuNAcα2-3Galβ1-3GalNAc O-linked sugar chains, a carbohydrate sequence which is recongnized by S.sanguis OMZ 9 on exfoliated HBEC. In similar experiments carried out with a buccal carcinoma cell line termed SqCC/Y1 S.sanguis OMZ 9 did not attach in great numbers to such cultured cells, and these cells were shown to not express membrane glycoprotien bearing α2,3-sialylated O-linked carbohydrate chain
Axial length growth and the risk of developing myopia in European children
Purpose: To generate percentile curves of axial length (AL) for European children, which can be used to estimate the risk of myopia in adulthood. Methods: A total of 12 386 participants from the population-based studies Generation R (Dutch children measured at both 6 and 9 years of age; N = 6934), the Avon Longitudinal Study of Parents and Children (ALSPAC) (British children 15 years of age; N = 2495) and the Rotterdam Study III (RS-III) (Dutch adults 57 years of age; N = 2957) contributed to this study. Axial length (AL) and corneal curvature data were available for all participants; objective cycloplegic refractive error was available only for the Dutch participants. We calculated a percentile score for each Dutch child at 6 and 9 years of age. Results: Mean (SD) AL was 22.36 (0.75) mm at 6 years, 23.10 (0.84) mm at 9 years, 23.41 (0.86) mm at 15 years and 23.67 (1.26) at adulthood. Axial length (AL) differences after the age of 15 occurred only in the upper 50%, with the highest difference within the 95th percentile and above. A total of 354 children showed accelerated axial growth and increased by more than 10 percentiles from age 6 to 9 years; 162 of these children (45.8%) were myopic at 9 years of age, compared to 4.8% (85/1781) for the children whose AL did not increase by more than 10 percentiles. Conclusion: This study provides normative values for AL that can be used to monitor eye growth in European children. These results can help clinicians detect excessive eye growth at an early age, thereby facilitating decision-making with respect to interventions for preventing and/or controlling myopia
APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans
Myopia is the most common vision disorder and the leading cause of visual impairment worldwide. However, gene variants identified to date explain less than 10% of the variance in refractive error, leaving the majority of heritability unexplained (“missing heritability”). Previously, we reported that expression of APLP2 was strongly associated with myopia in a primate model. Here, we found that low-frequency variants near the 5’-end of APLP2 were associated with refractive error in a prospective UK birth cohort (n = 3,819 children; top SNP rs188663068, p = 5.0 × 10−4) and a CREAM consortium panel (n = 45,756 adults; top SNP rs7127037, p = 6.6 × 10−3). These variants showed evidence of differential effect on childhood longitudinal refractive error trajectories depending on time spent reading (gene x time spent reading x age interaction, p = 4.0 × 10−3). Furthermore, Aplp2 knockout mice developed high degrees of hyperopia (+11.5 ± 2.2 D, p −4) compared to both heterozygous (-0.8 ± 2.0 D, p −4) and wild-type (+0.3 ± 2.2 D, p −4) littermates and exhibited a dose-dependent reduction in susceptibility to environmentally induced myopia (F(2, 33) = 191.0, p −4). This phenotype was associated with reduced contrast sensitivity (F(12, 120) = 3.6, p = 1.5 × 10−4) and changes in the electrophysiological properties of retinal amacrine cells, which expressed Aplp2. This work identifies APLP2 as one of the “missing” myopia genes, demonstrating the importance of a low-frequency gene variant in the development of human myopia. It also demonstrates an important role for APLP2 in refractive development in mice and humans, suggesting a high lev
Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia : The CREAM Consortium
Myopia, currently at epidemic levels in East Asia, is a leading cause of untreatable visual impairment. Genome-wide association studies (GWAS) in adults have identified 39 loci associated with refractive error and myopia. Here, the age-of-onset of association between genetic variants at these 39 loci and refractive error was investigated in 5200 children assessed longitudinally across ages 7-15 years, along with gene-environment interactions involving the major environmental risk-factors, nearwork and time outdoors. Specific variants could be categorized as showing evidence of: (a) early-onset effects remaining stable through childhood, (b) early-onset effects that progressed further with increasing age, or (c) onset later in childhood (N = 10, 5 and 11 variants, respectively). A genetic risk score (GRS) for all 39 variants explained 0.6% (P = 6.6E-08) and 2.3% (P = 6.9E-21) of the variance in refractive error at ages 7 and 15, respectively, supporting increased effects from these genetic variants at older ages. Replication in multi-ancestry samples (combined N = 5599) yielded evidence of childhood onset for 6 of 12 variants present in both Asians and Europeans. There was no indication that variant or GRS effects altered depending on time outdoors, however 5 variants showed nominal evidence of interactions with nearwork (top variant, rs7829127 in ZMAT4; P = 6.3E-04).Peer reviewe
Peanut‐induced anaphylaxis in children and adolescents: Data from the European Anaphylaxis Registry
Background Peanut allergy has a rising prevalence in high-income countries, affecting 0.5%-1.4% of children. This study aimed to better understand peanut anaphylaxis in comparison to anaphylaxis to other food triggers in European children and adolescents. Methods Data was sourced from the European Anaphylaxis Registry via an online questionnaire, after in-depth review of food-induced anaphylaxis cases in a tertiary paediatric allergy centre. Results 3514 cases of food anaphylaxis were reported between July 2007 - March 2018, 56% in patients younger than 18 years. Peanut anaphylaxis was recorded in 459 children and adolescents (85% of all peanut anaphylaxis cases). Previous reactions (42% vs. 38%; p = .001), asthma comorbidity (47% vs. 35%; p < .001), relevant cofactors (29% vs. 22%; p = .004) and biphasic reactions (10% vs. 4%; p = .001) were more commonly reported in peanut anaphylaxis. Most cases were labelled as severe anaphylaxis (Ring&Messmer grade III 65% vs. 56% and grade IV 1.1% vs. 0.9%; p = .001). Self-administration of intramuscular adrenaline was low (17% vs. 15%), professional adrenaline administration was higher in non-peanut food anaphylaxis (34% vs. 26%; p = .003). Hospitalization was higher for peanut anaphylaxis (67% vs. 54%; p = .004). Conclusions The European Anaphylaxis Registry data confirmed peanut as one of the major causes of severe, potentially life-threatening allergic reactions in European children, with some characteristic features e.g., presence of asthma comorbidity and increased rate of biphasic reactions. Usage of intramuscular adrenaline as first-line treatment is low and needs to be improved. The Registry, designed as the largest database on anaphylaxis, allows continuous assessment of this condition
Minimal coupling of electromagnetic field in Riemann-Cartan spacetime for perfect fluids
We minimally couple the electromagnetic field to gravity in Riemann-Cartan spacetime in the self-consistent formalism for perfect fluids by treating the internal energy of matter as a function of the electromagnetic field. The overall Lagrangian of the gravitational field, perfect fluid, and the electromagnetic field is constrained to be gauge invariant under gauge transformations of the vector potential. The theory preserves both charge conservation and particle number conservation, and gives the usual form of the free field equations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44578/1/10773_2004_Article_BF00673926.pd
Genetically low vitamin D concentrations and myopic refractive error: A Mendelian randomization study
Background: Myopia prevalence has increased in the past 20 years, with many studies linking the increase to reduced time spent outdoors. A number of recent observational studies have shown an inverse association between vitamin D [25(OH)D] serum levels and myopia. However, in such studies it is difficult to separate the effects of time outdoors and vitamin D levels. In this work we use Mendelian randomization (MR) to assess if genetically determined 25(OH)D levels contribute to the degree of myopia. Methods: We performed MR using results from a meta-analysis of refractive error (RE) genome-wide association study (GWAS) that included 37 382 and 8 376 adult participants of European and Asian ancestry, respectively, published by the Consortium for Refractive Error And Myopia (CREAM). We used single nucleotide polymorphisms (SNPs) i
Multi-trait genome-wide association study identifies new loci associated with optic disc parameters
A new avenue of mining published genome-wide association studies includes the joint analysis of related traits. The power of this approach depends on the genetic correlation of traits, which reflects the number of pleiotropic loci, i.e. genetic loci influencing multiple traits. Here, we applied new meta-analyses of optic nerve head (ONH) related traits implicated in primary open-angle glaucoma (POAG); intraocular pressure and central corneal thickness using Haplotype reference consortium imputations. We performed a multi-trait analysis of ONH parameters cup area, disc area and vertical cup-disc ratio. We uncover new variants; rs11158547 in PPP1R36-PLEKHG3 and rs1028727 near SERPINE3 at genome-wide significance that replicate in independent Asian cohorts imputed to 1000 Genomes. At this point, validation of these variants in POAG cohorts is hampered by the high degree of heterogeneity. Our results show that multi-trait analysis is a valid approach to identify novel pleiotropic variants for ONH