2,549 research outputs found

    Exterior cloaking with active sources in two dimensional acoustics

    Get PDF
    We cloak a region from a known incident wave by surrounding the region with three or more devices that cancel out the field in the cloaked region without significantly radiating waves. Since very little waves reach scatterers within the cloaked region, the scattered field is small and the scatterers are for all practical purposes undetectable. The devices are multipolar point sources that can be determined from Green's formula and an addition theorem for Hankel functions. The cloaking devices are exterior to the cloaked region

    Active Exterior Cloaking

    Full text link
    A new method of cloaking is presented. For two-dimensional quasistatics it is proven how a single active exterior cloaking device can be used to shield an object from surrounding fields, yet produce very small scattered fields. The problem is reduced to finding a polynomial which is approximately one within one disk and zero within a second disk, and such a polynomial is constructed. For the two-dimensional Helmholtz equation, it is numerically shown that three active exterior devices placed around the object suffice to produce very good cloaking.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Small Antenna Based on MEMS and Metamaterial Properties for Reconfigurable Applications

    Get PDF
    This paper presents the design of a novel, small coplanar antenna using microelectromechanical systems (MEMS) and metamaterial (MTM) properties. The antenna is designed using coplanar waveguide (CPW) technology, presenting lower dielectric losses and higher signal integrity. The design method for this MEMS-MTM antenna, herein presented, is based on a composite right/left hand (CRLH) transmission Line (TL) using a mixed approach; considering the circuit model and full-wave simulations. The fabrication process is based on high-resistivity silicon wafers. The radiator has dimensions of 0.017 λg × 0.033 λg and a thickness of 0.0116 λg, whereas the complete circuit, of 5 mm × 11 mm, is equivalent to 0.14 λg × 0.31 λg. The antenna is designed using MEMS parallel-plate capacitors as the radiator, which also allows for the reconfiguration of the central frequency by electrostatically varying the capacitance. The results presented here correspond to a central frequency of 8.4 GHz. Due to its small size, this antenna has a wide variety of applications in wireless circuits for different fields

    Electronic transport through a parallel--coupled triple quantum dot molecule: Fano resonances and bound states in the continuum

    Full text link
    The electronic transport through a triple quantum dot molecule attached in parallel to leads in presence of a magnetic flux is studied. Analytical expressions of the linear conductance and density of states for the molecule in equilibrium at zero temperature are obtained. As a consequence of quantum interference, the conductance exhibits in general a Breit--Wigner and two Fano resonances, the positions and widths of which are controlled by the magnetic field. Every two flux quanta, there is an inversion of roles of the bonding and antibonding states. For particular values of the magnetic flux and dot-lead couplings, one or even both Fano resonances collapse and bound states in the continuum (BIC's) are formed. The line broadenings of the molecular states are examined as a function of the Aharonov--Bohm phase around the condition for the formation of BIC's, finding resonances extremely narrow and robust against variations of the magnetic field.Comment: 15 pages, 7 figure

    Evolution of an elliptical bubble in an accelerating extensional flow

    Get PDF
    Mathematical models that describe the dynamical behavior of a thin gas bubble embedded in a glass fiber during a fiber drawing process have been discussed and analyzed. The starting point for the mathematical modeling was the equations presented in [1] for a glass fiber with a hole undergoing extensional flow. These equations were reconsidered here with the additional reduction that the hole, i.e. the gas bubble, was thin as compared to the radius of the fiber and of finite extent. The primary model considered was one in which the mass of the gas inside the bubble was fixed. This fixed-mass model involved equations for the axial velocity and fiber radius, and equations for the radius of the bubble and the gas pressure inside the bubble. The model equations assumed that the temperature of the furnace of the drawing tower was known. The governing equations of the bubble are hyperbolic and predict that the bubble cannot extend beyond the limiting characteristics specified by the ends of the initial bubble shape. An analysis of pinch-off was performed, and it was found that pinch-off can occur, depending on the parameters of the model, due to surface tension when the bubble radius is small. In order to determine the evolution of a bubble, a numerical method of solution was presented. The method was used to study the evolution of two different initial bubble shapes, one convex and the other non-convex. Both initial bubble shapes had fore-aft symmetry, and it was found that the bubbles stretched and elongated severely during the drawing process. For the convex shape, fore-aft symmetry was lost in the middle of the drawing process, but the symmetry was re-gained by the end of the drawing tower. A small amount of pinch-off was observed at each end for this case, so that the final bubble length was slightly shorter than its theoretical maximum length. For the non-convex initial shape, pinch-off occurred in the middle of the bubble resulting in two bubbles by the end of the fiber draw. The two bubbles had different final pressures and did not have fore-aft symmetry. An extension of the fixed-mass model was considered in which the gas in the bubble was allowed to diffuse into the surrounding glass. The governing equations for this leaky-mass model were developed and manipulated into a form suitable for a numerical treatment

    Apo B100 similarities to viral proteins suggest basis for LDL-DNA binding and transfection capacity

    Get PDF
    LDL mediates transfection with plasmid DNA in a variety of cell types in vitro and in several tissues in vivo in the rat. The transfection capacity of LDL is based on apo B100, as arginine/lysine clusters, suggestive of nucleic acid-binding domains and nuclear localization signal sequences, are present throughout the molecule. Apo E may also contribute to this capacity because of its similarity to the Dengue virus capsid proteins and its ability to bind DNA. Synthetic peptides representing two apo B100 regions with prominent Arg/Lys clusters were shown to bind DNA. Region 1 (0014Lys-Ser 0160) shares sequence motifs present in DNA binding domains of Interferon Regulatory Factors and Flaviviridae capsid/core proteins. It also contains a close analog of the B/E receptor ligand of apo E. Region 1 peptides, B1-1 (0014Lys-Glu0054) and B1-2 (0055Leu- Ala0096), mediate transfection of HeLa cells but are cytotoxic. Region 2 (3313Asp-Thr3431), containing the known B/E receptor ligand, shares analog motifs with the human herpesvirus 5 immediate-early transcriptional regulator ( UL122) and Flaviviridae NS3 helicases. Region 2 peptides, B2-1 (3313Asp-Glu3355), and B2-2 (3356Gly-Thr3431) are ineffective in cell transfection and are noncytotoxic.jlr These results confirm the role of LDL as a natural transfection vector in vivo, a capacity imparted by the apo B100, and suggest a basis for Flaviviridae cell entry. Copyright © 2010 by the American Society for Biochemistry and Molecular Biology, Inc

    Transformation elastodynamics and active exterior acoustic cloaking

    Full text link
    This chapter consists of three parts. In the first part we recall the elastodynamic equations under coordinate transformations. The idea is to use coordinate transformations to manipulate waves propagating in an elastic material. Then we study the effect of transformations on a mass-spring network model. The transformed networks can be realized with "torque springs", which are introduced here and are springs with a force proportional to the displacement in a direction other than the direction of the spring terminals. Possible homogenizations of the transformed networks are presented, with potential applications to cloaking. In the second and third parts we present cloaking methods that are based on cancelling an incident field using active devices which are exterior to the cloaked region and that do not generate significant fields far away from the devices. In the second part, the exterior cloaking problem for the Laplace equation is reformulated as the problem of polynomial approximation of analytic functions. An explicit solution is given that allows to cloak larger objects at a fixed distance from the cloaking device, compared to previous explicit solutions. In the third part we consider the active exterior cloaking problem for the Helmholtz equation in 3D. Our method uses the Green's formula and an addition theorem for spherical outgoing waves to design devices that mimic the effect of the single and double layer potentials in Green's formula.Comment: Submitted as a chapter for the volume "Acoustic metamaterials: Negative refraction, imaging, lensing and cloaking", Craster and Guenneau ed., Springe
    • …
    corecore