32 research outputs found

    Structural variation of protein-ligand complexes of the first bromodomain of BRD4

    Get PDF
    The bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal domain (BET) family, plays a key role in several diseases, especially cancers. With increased interest in BRD4 as a therapeutic target, many X-ray crystal structures of the protein in complex with small molecule inhibitors are publicly available over the recent decade. In this study, we use this structural information to investigate the conformations of the first bromodomain (BD1) of BRD4. Structural alignment of 297 BRD4-BD1 complexes shows a high level of similarity between the structures of BRD4-BD1, regardless of the bound ligand. We employ WONKA, a tool for detailed analyses of protein binding sites, to compare the active site of over 100 of these crystal structures. The positions of key binding site residues show a high level of conformational similarity, with the exception of Trp81. A focused analysis on the highly conserved water network in the binding site of BRD4-BD1 is performed to identify the positions of these water molecules across the crystal structures. The importance of the water network is illustrated using molecular docking and absolute free energy perturbation simulations. 82% of the ligand poses were better predicted when including water molecules as part of the receptor. Our analysis provides guidance for the design of new BRD4-BD1 inhibitors and the selection of the best structure of BRD4-BD1 to use in structure-based drug design, an important approach for faster and more cost-efficient lead discovery

    Molecular Simulation of ?v?6 Integrin Inhibitors

    Get PDF
    The urgent need for new treatments for the chronic lung disease idiopathic pulmonary fibrosis (IPF) motivates research into antagonists of the RGD binding integrin ?v?6, a protein linked to the initiation and progression of the disease. Molecular dynamics (MD) simulations of ?v?6 in complex with its natural ligand, pro-TGF-?1, show the persistence over time of a bidentate Arg-Asp ligand-receptor interaction and a metal chelate interaction between an aspartate on the ligand and an Mg2+ ion in the active site. This is typical of RGD binding ligands. Additional binding site interactions, which are not observed in the static crystal structure, are also identified. We investigate an RGD mimetic, which serves as a framework for a series of potential ?v?6 antagonists. The scaffold includes a derivative of the widely utilized 1,8-naphthyridine moiety, for which we present force field parameters, to enable MD and relative free energy perturbation (FEP) simulations. The MD simulations highlight the importance of hydrogen bonding and cation-? interactions. The FEP calculations predict relative binding affinities, within 1.5 kcal mol-1, on average, of experiments

    Near-ultraviolet circular dichroism and two-dimensional spectroscopy of polypeptides

    Get PDF
    A fully quantitative theory of the relationship between protein conformation and optical spectroscopy would facilitate deeper insights into biophysical and simulation studies of protein dynamics and folding. In contrast to intense bands in the far-ultraviolet, near-UV bands are much weaker and have been challenging to compute theoretically. We report some advances in the accuracy of calculations in the near-UV, which were realised through the consideration of the vibrational structure of the electronic transitions of aromatic side chains

    Gathering Global Perspectives to Establish the Research Priorities and Minimum Data Sets for Degenerative Cervical Myelopathy:Sampling Strategy of the First Round Consensus Surveys of AO Spine RECODE-DCM

    Get PDF
    STUDY DESIGN: Survey.INTRODUCTION: AO Spine Research Objectives and Common Data Elements for Degenerative Cervical Myelopathy (AO Spine RECODE-DCM) is an international initiative that aims to accelerate knowledge discovery and improve outcomes by developing a consensus framework for research. This includes defining the top research priorities, an index term and a minimum data set (core outcome set and core data elements set - core outcome set (COS)/core data elements (CDE)).OBJECTIVE: To describe how perspectives were gathered and report the detailed sampling characteristics.METHODS: A two-stage, electronic survey was used to gather and seek initial consensus. Perspectives were sought from spinal surgeons, other healthcare professionals and people with degenerative cervical myelopathy (DCM). Participants were allocated to one of two parallel streams: (1) priority setting or (2) minimum dataset. An email campaign was developed to advertise the survey to relevant global stakeholder individuals and organisations. People with DCM were recruited using the international DCM charity Myelopathy.org and its social media channels. A network of global partners was recruited to act as project ambassadors. Data from Google Analytics, MailChimp and Calibrum helped optimise survey dissemination.RESULTS: Survey engagement was high amongst the three stakeholder groups: 208 people with DCM, 389 spinal surgeons and 157 other healthcare professionals. Individuals from 76 different countries participated; the United States, United Kingdom and Canada were the most common countries of participants.CONCLUSION: AO Spine RECODE-DCM recruited a diverse and sufficient number of participants for an international PSP and COS/CDE process. Whilst PSP and COS/CDE have been undertaken in other fields, to our knowledge, this is the first time they have been combined in one process.</p

    The wide-field, multiplexed, spectroscopic facility WEAVE : survey design, overview, and simulated implementation

    Get PDF
    Funding for the WEAVE facility has been provided by UKRI STFC, the University of Oxford, NOVA, NWO, Instituto de AstrofĂ­sica de Canarias (IAC), the Isaac Newton Group partners (STFC, NWO, and Spain, led by the IAC), INAF, CNRS-INSU, the Observatoire de Paris, RĂ©gion Île-de-France, CONCYT through INAOE, Konkoly Observatory (CSFK), Max-Planck-Institut fĂŒr Astronomie (MPIA Heidelberg), Lund University, the Leibniz Institute for Astrophysics Potsdam (AIP), the Swedish Research Council, the European Commission, and the University of Pennsylvania.WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ∌ 5000, or two shorter ranges at R ∌ 20,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∌ 3 million stars and detailed abundances for ∌ 1.5 million brighter field and open-cluster stars; (ii) survey ∌ 0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey  ∌ 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z 1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.PostprintPeer reviewe

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Full text link
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366−-959\,nm at R∌5000R\sim5000, or two shorter ranges at R∌20 000R\sim20\,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∌\sim3 million stars and detailed abundances for ∌1.5\sim1.5 million brighter field and open-cluster stars; (ii) survey ∌0.4\sim0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ∌400\sim400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z<0.5z<0.5 cluster galaxies; (vi) survey stellar populations and kinematics in ∌25 000\sim25\,000 field galaxies at 0.3â‰Čzâ‰Č0.70.3\lesssim z \lesssim 0.7; (vii) study the cosmic evolution of accretion and star formation using >1>1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.Comment: 41 pages, 27 figures, accepted for publication by MNRA

    Re-evaluating the Quoit Brooch Style: Economic and Cultural Transformations in the 5th Century ad, with an Updated Catalogue of Known Quoit Brooch Style Artefacts

    Get PDF
    Quoit Brooch Style material, produced from the early 5th century onwards, has previously been considered mostly from a stylistic point of view, leaving much scope for further investigation. In addition, the known corpus of material has been much expanded through newly excavated and metal-detected finds. In this article, I bring together the known extant material for the first time, and document important evidence relating to contextual dating, gender associations, manufacture (including new compositional analysis of c 75 objects), repair, and reuse. The article questions previous interpretations of Quoit Brooch Style material relating to Germanic mercenaries and/or post-Romano-British political entities. It interprets the earliest material as part of wider trends elsewhere, in Britain and in Continental northwestern Europe, for the production of material imitating late Roman symbols of power. It presents new evidence for connectivity with Continental Europe via the western Channel route in the 5th century. A detailed investigation of individual artefacts shows that many Quoit Brooch Style objects were reused, sometimes being subjected to extensive repair and modification. This provides new insights into the 5th century metal economy, for instance, acute problems in the availability of new metal objects in southeastern Britain in the middle years of the 5th century. Compositional analysis contributes further to our understanding of metal supply in the 5th century and relationships with the post-Roman West. Insights are provided into wider cultural transformations in the 5th century and the gradual loss of value that occurred for Roman-style objects

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    A ETNOECOLOGIA EM PERSPECTIVA: ORIGENS, INTERFACES E CORRENTES ATUAIS DE UM CAMPO EM ASCENSÃO

    Full text link

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Get PDF
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366−959\,nm at R∌5000, or two shorter ranges at R∌20000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∌3 million stars and detailed abundances for ∌1.5 million brighter field and open-cluster stars; (ii) survey ∌0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ∌400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator
    corecore