1,157 research outputs found

    WHAT IS THE MODE OF DEATH AMONG HEART FAILURE PATIENTS WITH HYPONATREMIA AND IMPLANTABLE CARDIOVERTER DEFIBRILLATORS?

    Get PDF
    Report submitted by IWMI Nile Basin and East Africa Sub-Regional Office, Addis Ababa, Ethiopia, to International Development Research Centre (IDRC). Project No.10344

    CCRS proposal for evaluating LANDSAT-4 MSS and TM data

    Get PDF
    The measurement of registration errors in LANDSAT MSS data is discussed as well as the development of a revised algorithm for the radiometric calibration of TM data and the production of a geocoded TM image

    Ferrous Campylobacter jejuni truncated hemoglobin P displays an extremely high reactivity for cyanide - A comparative study

    Get PDF
    Campylobacter jejuni hosts two hemoglobins (Hbs). The Camplylobacter jejuni single-domain Hb (called Cgb) is homologous to the globin domain of flavohemoglobin, and it has been proposed to protect the bacterium against nitrosative stress. The second Hb is called Ctb (hereafter Cj-trHbP), belongs to truncated Hb group III, and has been hypothesized to be involved in O 2 chemistry. Here, the kinetics and thermodynamics of cyanide binding to ferric and ferrous Cj-trHbP [Cj-trHbP(III) and Cj-trHbP(II), respectively] are reported and analyzed in parallel with those of related heme proteins, with particular reference to those from Mycobacterium tuberculosis. The affinity of cyanide for Cj-trHbP(II) is higher than that reported for any known (in)vertebrate globin by more than three orders of magnitude (K = 1.2 × 10-6 m). This can be fully attributed to the highest (ever observed for a ferrous Hb) cyanide-binding association rate constant (kon = 3.3 × 103 m-1·s-1), even though the binding process displays a rate-limiting step (kmax = 9.1 s -1). Cj-trHbP(III) shows a very high affinity for cyanide (L = 5.8 × 10-9 m); however, cyanide association kinetics are independent of cyanide concentration, displaying a rate-limiting step (l max = 2.0 × 10-3 s-1). Values of the first-order rate constant for cyanide dissociation from Cj-trHbP(II)-cyanide and Cj-trHbP(III)-cyanide (koff =5.0 × 10-3 s -1 and loff ≥ 1 × 10-4 s-1, respectively) are similar to those reported for (in)vertebrate globins. The very high affinity of cyanide for Cj-trHbP(II), reminiscent of that of horseradish peroxidase(II), suggests that this globin may participate in cyanide detoxification. © 2008 The Authors

    Destruction of the Mott Insulating Ground State of Ca_2RuO_4 by a Structural Transition

    Full text link
    We report a first-order phase transition at T_M=357 K in single crystal Ca_2RuO_4, an isomorph to the superconductor Sr_2RuO_4. The discontinuous decrease in electrical resistivity signals the near destruction of the Mott insulating phase and is triggered by a structural transition from the low temperature orthorhombic to a high temperature tetragonal phase. The magnetic susceptibility, which is temperature dependent but not Curie-like decreases abruptly at TM and becomes less temperature dependent. Unlike most insulator to metal transitions, the system is not magnetically ordered in either phase, though the Mott insulator phase is antiferromagnetic below T_N=110 K.Comment: Accepted for publication in Phys. Rev. B (Rapid Communications

    Designing healthy communities: A walkability analysis of LEED-ND

    Get PDF
    AbstractPrevailing city design in many countries has created sedentary societies that depend on automobile use. Consequently, architects, urban designers, and land planners have developed new urban design theories, which have been incorporated into the Leadership in Energy and Environmental Design for Neighborhood Development (LEED-ND) certification system. The LEED-ND includes design elements that improve human well-being by facilitating walking and biking, a concept known as walkability. Despite these positive developments, relevant research findings from other fields of study have not been fully integrated into the LEED-ND. According to Zuniga-Teran (2015), relevant walkability research findings from multiple disciplines were organized into a walkability framework (WF) that organizes design elements related to physical activity into nine categories, namely, connectivity, land use, density, traffic safety, surveillance, parking, experience, greenspace, and community. In this study, we analyze walkability in the LEED-ND through the lens of the nine WF categories. Through quantitative and qualitative analyses, we identify gaps and strengths in the LEED-ND and propose potential enhancements to this certification system that reflects what is known about enhancing walkability more comprehensively through neighborhood design analysis. This work seeks to facilitate the translation of research into practice, which can ultimately lead to more active and healthier societies

    Nucleon-induced reactions at intermediate energies: New data at 96 MeV and theoretical status

    Full text link
    Double-differential cross sections for light charged particle production (up to A=4) were measured in 96 MeV neutron-induced reactions, at TSL laboratory cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U, were performed using two independent devices, SCANDAL and MEDLEY. The data were recorded with low energy thresholds and for a wide angular range (20-160 degrees). The normalization procedure used to extract the cross sections is based on the np elastic scattering reaction that we measured and for which we present experimental results. A good control of the systematic uncertainties affecting the results is achieved. Calculations using the exciton model are reported. Two different theoretical approches proposed to improve its predictive power regarding the complex particle emission are tested. The capabilities of each approach is illustrated by comparison with the 96 MeV data that we measured, and with other experimental results available in the literature.Comment: 21 pages, 28 figure

    Neutron-induced Light Ion Production From Fe, Pb And U At 96 Mev

    Get PDF
    Double-differential cross sections for light-ion production (up to A=4) induced by 96 MeV neutrons have been measured for nat^{nat}Fe, nat^{nat}Pb and nat^{nat}U. The experiments have been performed at the The Svedberg Laboratory in Uppsala, using two independent devices, MEDLEY and SCANDAL. The recorded data cover a wide angular range (20º - 160º) with low energy thresholds. The work was performed within the HINDAS collaboration studying three of the most important nuclei for incineration of nuclear waste with accelerator-driven systems (ADS). The obtained cross section data are of particular interest for the understanding of the so-called pre-equilibrium stage in a nuclear reaction and are compared with model calculations performed with the GNASH, TALYS and PREEQ code
    corecore