12,674 research outputs found

    Flapping states of an el astically anchored wing in a uniform flow

    Full text link
    Linear stability analysis of an elastically anchored wing in a uniform flow is investigated both analytically and numerically. The analytical formulation explicitly takes into account the effect of the wake on the wing by means of Theodorsen's theory. Three different parameters non-trivially rule the observed dynamics: mass density ratio between wing and fluid, spring elastic constant and distance between the wing center of mass and the spring anchor point on the wing. We found relationships between these parameters which rule the transition between stable equilibrium and fluttering. The shape of the resulting marginal curve has been successfully verified by high Reynolds number direct numerical simulations. Our findings are of interest in applications related to energy harvesting by fluid-structure interaction, a problem which has recently attracted a great deal of attention. The main aim in that context is to identify the optimal physical/geometrical system configuration leading to large sustained motion, which is the source of energy we aim to extract.Comment: 10 pages, 11 figures, submitted to J. Fluid. Mec

    XMM-Newton Detection of Hot Gas in the Eskimo Nebula: Shocked Stellar Wind or Collimated Outflows?

    Full text link
    The Eskimo Nebula (NGC 2392) is a double-shell planetary nebula (PN) known for the exceptionally large expansion velocity of its inner shell, ~90 km/s, and the existence of a fast bipolar outflow with a line-of-sight expansion velocity approaching 200 km/s. We have obtained XMM-Newton observations of the Eskimo and detected diffuse X-ray emission within its inner shell. The X-ray spectra suggest thin plasma emission with a temperature of ~2x10^6 K and an X-ray luminosity of L_X = (2.6+/-1.0)x10^31 (d/1150 pc)^2 ergs/s, where d is the distance in parsecs. The diffuse X-ray emission shows noticeably different spatial distributions between the 0.2-0.65 keV and 0.65-2.0 keV bands. High-resolution X-ray images of the Eskimo are needed to determine whether its diffuse X-ray emission originates from shocked fast wind or bipolar outflows.Comment: 4 pages, 2 figures, accepted in Astronomy and Astrophysics Letter

    Spatiotemporal chaotic dynamics of solitons with internal structure in the presence of finite-width inhomogeneities

    Full text link
    We present an analytical and numerical study of the Klein-Gordon kink-soliton dynamics in inhomogeneous media. In particular, we study an external field that is almost constant for the whole system but that changes its sign at the center of coordinates and a localized impurity with finite-width. The soliton solution of the Klein-Gordon-like equations is usually treated as a structureless point-like particle. A richer dynamics is unveiled when the extended character of the soliton is taken into account. We show that interesting spatiotemporal phenomena appear when the structure of the soliton interacts with finite-width inhomogeneities. We solve an inverse problem in order to have external perturbations which are generic and topologically equivalent to well-known bifurcation models and such that the stability problem can be solved exactly. We also show the different quasiperiodic and chaotic motions the soliton undergoes as a time-dependent force pumps energy into the traslational mode of the kink and relate these dynamics with the excitation of the shape modes of the soliton.Comment: 10 pages Revtex style article, 22 gziped postscript figures and 5 jpg figure

    Diffuse X-ray Emission within Wolf-Rayet Nebulae

    Full text link
    We discuss our most recent findings on the diffuse X-ray emission from Wolf-Rayet (WR) nebulae. The best-quality X-ray observations of these objects are those performed by XMM-Newton and Chandra towards S308, NGC2359, and NGC6888. Even though these three WR nebulae might have different formation scenarios, they all share similar characteristics: i) the main plasma temperatures of the X-ray-emitting gas is found to be TT=[1-2]×\times106^{6} K, ii) the diffuse X-ray emission is confined inside the [O III] shell, and iii) their X-ray luminosities and electron densities in the 0.3-2.0~keV energy range are LX≈L_\mathrm{X}\approx1033^{33}-1034^{34}~erg~s−1^{-1} and ne≈n_\mathrm{e}\approx0.1-1~cm−3^{-3}, respectively. These properties and the nebular-like abundances of the hot gas suggest mixing and/or thermal conduction is taking an important role reducing the temperature of the hot bubble.Comment: 3 pages, 1 figure; International Workshop on Wolf-Rayet Star
    • …
    corecore