2,850 research outputs found
A decentralized scalable approach to voltage control of DC islanded microgrids
We propose a new decentralized control scheme for DC Islanded microGrids
(ImGs) composed by several Distributed Generation Units (DGUs) with a general
interconnection topology. Each local controller regulates to a reference value
the voltage of the Point of Common Coupling (PCC) of the corresponding DGU.
Notably, off-line control design is conducted in a Plug-and-Play (PnP) fashion
meaning that (i) the possibility of adding/removing a DGU without spoiling
stability of the overall ImG is checked through an optimization problem; (ii)
when a DGU is plugged in or out at most neighbouring DGUs have to update their
controllers and (iii) the synthesis of a local controller uses only information
on the corresponding DGU and lines connected to it. This guarantee total
scalability of control synthesis as the ImG size grows or DGU gets replaced.
Yes, under mild approximations of line dynamics, we formally guarantee
stability of the overall closed-loop ImG. The performance of the proposed
controllers is analyzed simulating different scenarios in PSCAD.Comment: arXiv admin note: text overlap with arXiv:1405.242
Plug-and-play and coordinated control for bus-connected AC islanded microgrids
This paper presents a distributed control architecture for voltage and
frequency stabilization in AC islanded microgrids. In the primary control
layer, each generation unit is equipped with a local controller acting on the
corresponding voltage-source converter. Following the plug-and-play design
approach previously proposed by some of the authors, whenever the
addition/removal of a distributed generation unit is required, feasibility of
the operation is automatically checked by designing local controllers through
convex optimization. The update of the voltage-control layer, when units plug
-in/-out, is therefore automatized and stability of the microgrid is always
preserved. Moreover, local control design is based only on the knowledge of
parameters of power lines and it does not require to store a global microgrid
model. In this work, we focus on bus-connected microgrid topologies and enhance
the primary plug-and-play layer with local virtual impedance loops and
secondary coordinated controllers ensuring bus voltage tracking and reactive
power sharing. In particular, the secondary control architecture is
distributed, hence mirroring the modularity of the primary control layer. We
validate primary and secondary controllers by performing experiments with
balanced, unbalanced and nonlinear loads, on a setup composed of three
bus-connected distributed generation units. Most importantly, the stability of
the microgrid after the addition/removal of distributed generation units is
assessed. Overall, the experimental results show the feasibility of the
proposed modular control design framework, where generation units can be
added/removed on the fly, thus enabling the deployment of virtual power plants
that can be resized over time
Mixed-integer-linear-programming-based energy management system for hybrid PV-wind-battery microgrids: Modeling, design, and experimental verification
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksMicrogrids are energy systems that aggregate distributed energy resources, loads, and power electronics devices in a stable and balanced way. They rely on energy management systems to schedule optimally the distributed energy resources. Conventionally, many scheduling problems have been solved by using complex algorithms that, even so, do not consider the operation of the distributed energy resources. This paper presents the modeling and design of a modular energy management system and its integration to a grid-connected battery-based microgrid. The scheduling model is a power generation-side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data. The operation of the microgrid is complemented with a supervisory control stage that compensates any mismatch between the offline scheduling process and the real time microgrid operation. The proposal has been tested experimentally in a hybrid microgrid at the Microgrid Research Laboratory, Aalborg University.Peer ReviewedPostprint (author's final draft
Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging
In this work we present new distributed controllers for secondary frequency
and voltage control in islanded microgrids. Inspired by techniques from
cooperative control, the proposed controllers use localized information and
nearest-neighbor communication to collectively perform secondary control
actions. The frequency controller rapidly regulates the microgrid frequency to
its nominal value while maintaining active power sharing among the distributed
generators. Tuning of the voltage controller provides a simple and intuitive
trade-off between the conflicting goals of voltage regulation and reactive
power sharing. Our designs require no knowledge of the microgrid topology,
impedances or loads. The distributed architecture allows for flexibility and
redundancy, and eliminates the need for a central microgrid controller. We
provide a voltage stability analysis and present extensive experimental results
validating our designs, verifying robust performance under communication
failure and during plug-and-play operation.Comment: Accepted for publication in IEEE Transactions on Industrial
Electronic
- …