349 research outputs found

    Learning policies through argumentation-derived evidence (extended abstract)

    Get PDF
    (c) IFAAMASPublisher PD

    Learning policy constraints through dialogue

    Get PDF
    Publisher PD

    Learning How a Tool Affords by Simulating 3D Models from the Web

    Get PDF
    Thanks to: UoAs ABVenture Zone, N. Petkov, K. Georgiev, B. Nougier, S. Fichtl, S. Ramamoorthy, M. Beetz, A. Haidu, J. Alexander, M. Schoeler, N. Pugeault, D. Cruickshank, M. Chung and N. Khan. Paulo Abelha is on a PhD studentship supported by the Brazilian agency CAPES through the program Science without Borders. Frank Guerin received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Published in: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) DOI: 10.1109/IROS.2017.8206372 Date of Conference: 24-28 Sept. 2017 Conference Location: Vancouver, BC, Canada.Postprin

    An Open Source Data Contamination Report for Large Language Models

    Full text link
    Data contamination in model evaluation has become increasingly prevalent with the growing popularity of large language models. It allows models to "cheat" via memorisation instead of displaying true capabilities. Therefore, contamination analysis has become an crucial part of reliable model evaluation to validate results. However, existing contamination analysis is usually conducted internally by large language model developers and often lacks transparency and completeness. This paper presents an extensive data contamination report for over 15 popular large language models across six popular multiple-choice QA benchmarks. We also introduce an open-source pipeline that enables the community to perform contamination analysis on customised data and models. Our experiments reveal varying contamination levels ranging from 1\% to 45\% across benchmarks, with the contamination degree increasing rapidly over time. Performance analysis of large language models indicates that data contamination does not necessarily lead to increased model metrics: while significant accuracy boosts of up to 14\% and 7\% are observed on contaminated C-Eval and Hellaswag benchmarks, only a minimal increase is noted on contaminated MMLU. We also find larger models seem able to gain more advantages than smaller models on contaminated test sets

    ACL Anthology Helper: A Tool to Retrieve and Manage Literature from ACL Anthology

    Full text link
    The ACL Anthology is an online repository that serves as a comprehensive collection of publications in the field of natural language processing (NLP) and computational linguistics (CL). This paper presents a tool called ``ACL Anthology Helper''. It automates the process of parsing and downloading papers along with their meta-information, which are then stored in a local MySQL database. This allows for efficient management of the local papers using a wide range of operations, including "where," "group," "order," and more. By providing over 20 operations, this tool significantly enhances the retrieval of literature based on specific conditions. Notably, this tool has been successfully utilised in writing a survey paper (Tang et al.,2022a). By introducing the ACL Anthology Helper, we aim to enhance researchers' ability to effectively access and organise literature from the ACL Anthology. This tool offers a convenient solution for researchers seeking to explore the ACL Anthology's vast collection of publications while allowing for more targeted and efficient literature retrieval
    corecore