4 research outputs found

    Noise in the Cretaceous Quiet Zone uncovers plate tectonic chain reaction

    No full text
    Global plate reorganizations, intriguing but loosely defined periods of profoundly changing plate motions, may be caused by a single trigger such as a continental collision or a rising mantle plume. But whether and how such triggers propagate throughout a plate circuit remains unknown. Here, we show how a rising mantle plume set off a ‘plate tectonic chain reaction’. Plume rise has been shown to trigger formation of a subduction zone within the Neotethys Ocean between Africa and Eurasia at ~105 Ma. We provide new constraints on Africa-Eurasia convergence rates using variations in geomagnetic ‘noise’ within the Cretaceous Normal Superchron (the 126-83 Ma period without magnetic reversals) recorded in the Atlantic Quiet Zones crust. These new constraints are consistent with the timing of numerically predicted African Plate acceleration and deceleration associated with onset and arrest of the intra-Neotethyan subduction zone. The acceleration was associated with a change in Africa-Eurasia convergence direction, which in turn was accommodated by a next subduction initiation at ~85 Ma in the Alpine region that cascaded into regional tectonic events. Our concept of plate tectonic chain reactions shows how changes in plate motion, underpinned by mantle dynamics, may self-perpetuate through a plate circuit, making global plate reorganizations a key to unlock the driving mechanisms behind plate tectonics

    Chromite in komatiites: 3D morphologies with implications for crystallization mechanisms

    No full text
    High-resolution X-ray computed tomography has been carried out on a suite of komatiite samples representing a range of volcanic facies, chromite contents and degrees of alteration and metamorphism, to reveal the wide range of sizes, shapes and degrees of clustering that chromite grains display as a function of cooling history. Dendrites are spectacularly skeletal chromite grains formed during very rapid crystallization of supercooled melt in spinifex zones close to flow tops. At slower cooling rates in the interiors of thick flows, chromite forms predominantly euhedral grains. Large clusters (up to a dozen of grains) are characteristic of liquidus chromite, whereas fine dustings of mostly individual similar to 20-mu m grains form by in situ crystallization from trapped intercumulus liquid. Chromite in coarse-grained olivine cumulates from komatiitic dunite bodies occurs in two forms: as clusters or chains of euhedral crystals, developing into "chicken-wire" texture where chromite is present in supra-cotectic proportions; and as strongly dendritic, semi-poikilitic grains. These dendritic grains are likely to have formed by rapid crescumulate growth from magma that was close to its liquidus temperature but supersaturated with chromite. In some cases, this process seems to have been favoured by nucleation of chromite on the margins of sulphide liquid blebs. This texture is a good evidence for the predominantly cumulus origin of oikocrysts and in situ origin of heteradcumulate textures. Our 3D textural analysis confirms that the morphology of chromite crystals is a distinctive indicator of crystallization environment even in highly altered rocks

    Sulfide-olivine Fe-Ni exchange and the origin of anomalously Ni rich magmatic sulfides

    No full text
    Equilibration between sulfide liquid and olivine is expressed in terms of the exchange coefficient for Fe and Ni, KD = (XNiS/XFeS)sulfideliquid / (XNiO/XFeO)olivine . The positive dependence of KD on Ni + Cu content of sulfide liquid, as well as on fO2, has been demonstrated experimentally and gives rise to a critical nonlinearity in the relationship between sulfide and olivine-saturated silicate liquid compositions. Measured KD values for olivinesulfide pairs from disseminated magmatic sulfide ores at Betheno (Western Australia) and Mirabela (Brazil) are consistent with independent estimates of fO2, and fall within the range where the composition dependence of KD is strong. This effect has been modeled quantitatively, using an empirical best fit to available experimental data as a parameterization of the KD variability, and calculating the equilibrium distribution of Fe, Ni, and Mg between coexisting olivine, silicate melt, and sulfide liquid as a function of the silicate/sulfide mass ratio R. It is shown that the composition dependence of KD is a key factor in giving rise to extremely Ni rich sulfides as exemplified by Betheno and Mirabela, where coexisting olivine is also Ni rich. Highly Ni enriched sulfides with anomalously high Ni/Cu ratios may be more common in nature than is commonly recognized and do not need to be explained by hydrothermal alteration processes

    Development of William’s Ridge, Kerguelen Plateau and Broken Ridge: tectonics, hotspot magmatism, microcontinents, and Australia’s Extended Continental Shelf

    No full text
    William’s Ridge, a ~300-km-long salient extending southeast from the Central Kerguelen Plateau, and Broken Ridge are conjugate divergent margins in the southern Indian Ocean that separated at ~43 Ma. In early 2020, scientists aboard Australia’s Marine National Facility, RV Investigator, acquired multichannel seismic reflection (MCS), sub-bottom profiling, multibeam bathymetry, and gravity data on these margins, as well as dredged rock samples, on a 57-day voyage. The research project constitutes the first-ever case study of conjugate oceanic plateau end-member tectonic plates, with the goal of advancing knowledge of lithospheric rifting, breakup, and initial plate separation processes. The first-ever dedicated multibeam mapping of William’s and Broken ridges encompassed ~52,000 km2 and ~43,000 km2, respectively. Four new RV Investigator MCS profiles (500 line-km) across William’s Ridge complement one legacy RV Rig Seismic and three new RV Sonne MCS profiles; five new RV Investigator MCS profiles (603 line-km) across the conjugate portion of Broken Ridge are the first to be acquired on that feature. Multibeam bathymetry and MCS transects of William’s Ridge show multiple linear ridges and troughs interpreted as horst and graben. In contrast, multibeam bathymetry and MCS transects of Broken Ridge show a prominent E-W scarp (Diamantina Escarpment) with a complex morphology of emanating en echelon crustal blocks and depressions at the base of the scarp. Prominent angular unconformities (middle Eocene hiatus?) characterize the sedimentary section on some ridges, and dipping reflection sequences within interpreted igneous basement suggest subaerial basalt flows. Rock dredges on the facing conjugate margin fault scarps targeted all stratigraphic levels exposing basement rocks. Nine on William’s Ridge yielded both oceanic and (in situ?) continental rocks; eight on Broken Ridge yielded solely oceanic rocks. The new geophysical data and geological samples may justify a new or revised submission to the United Nations Commission on the Limits of the Continental Shelf to extend Australia’s marine jurisdiction on and around William’s Ridge under the United Nations Convention on the Law of the Sea
    corecore