274 research outputs found

    Les enzymes antioxydantes circulantes comme marqueurs d'effet chez les mineurs de charbon

    Get PDF
    L'inhalation chronique de poussières de charbon entraîne une migration des cellules inflammatoires dans l'espace alvéolaire. La phagocytose des particules inhalées est suivie par une activation des macrophages et des neutrophiles, appelée " explosion oxydante ". Les cellules inflammatoires libèrent alors des protéases, des médiateurs de l'inflammation et des Espèces Activées de l'Oxygène (EAO). Les EAO sont des molécules dérivées de l'oxygène, ayant une durée de vie courte mais une extrême réactivité. Elles s'attaquent aux membranes des cellules, aux protéines, à l'ADN et sont impliquées dans le développement de nombreuses pathologies telles que la cataracte et le cancer

    Anti-angiogenesis: making the tumor vulnerable to the immune system

    Get PDF
    Ongoing angiogenesis has been shown to possess immune suppressive activity through several mechanisms. One of these mechanisms is the suppression of adhesion receptors, such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and E-selectin—adhesion molecules involved in leukocyte interactions—on the vascular endothelium. This phenomenon, when happening to the tumor endothelium, supports tumor growth due to escape from immunity. Since angiogenesis has this immune suppressive effect, it has been hypothesized that inhibition of angiogenesis may circumvent this problem. In vitro and in vivo data now show that several angiogenesis inhibitors are able to normalize endothelial adhesion molecule expression in tumor blood vessels, restore leukocyte vessel wall interactions, and enhance the inflammatory infiltrate in tumors. It is suggested that such angiogenesis inhibitors can make tumors more vulnerable for the immune system and may therefore be applied to facilitate immunotherapy approaches for the treatment of cancer

    Determinants of GBP Recruitment to Toxoplasma gondii Vacuoles and the Parasitic Factors That Control It

    Get PDF
    IFN-Îł is a major cytokine that mediates resistance against the intracellular parasite Toxoplasma gondii. The p65 guanylate-binding proteins (GBPs) are strongly induced by IFN-Îł. We studied the behavior of murine GBP1 (mGBP1) upon infection with T. gondii in vitro and confirmed that IFN-Îł-dependent re-localization of mGBP1 to the parasitophorous vacuole (PV) correlates with the virulence type of the parasite. We identified three parasitic factors, ROP16, ROP18, and GRA15 that determine strain-specific accumulation of mGBP1 on the PV. These highly polymorphic proteins are held responsible for a large part of the strain-specific differences in virulence. Therefore, our data suggest that virulence of T. gondii in animals may rely in part on recognition by GBPs. However, phagosomes or vacuoles containing Trypanosoma cruzi did not recruit mGBP1. Co-immunoprecipitation revealed mGBP2, mGBP4, and mGBP5 as binding partners of mGBP1. Indeed, mGBP2 and mGBP5 co-localize with mGBP1 in T. gondii-infected cells. T. gondii thus elicits a cell-autonomous immune response in mice with GBPs involved. Three parasitic virulence factors and unknown IFN-Îł-dependent host factors regulate this complex process. Depending on the virulence of the strains involved, numerous GBPs are brought to the PV as part of a large, multimeric structure to combat T. gondii.National Institutes of Health (U.S.)Massachusetts Life Sciences Center (New Investigator Award)National Institute of General Medical Sciences (U.S.) (Pre-Doctoral Grant in the Biological Sciences (5-T32-GM007287-33))Studienstiftung des deutschen VolkesCancer Research Institute (New York, N.Y.)Cleo and Paul Schimmel FoundationBayer HealthcareHuman Frontier Science Program (Strasbourg, France

    Prospective evaluation of weekly concomitant tumor bed boost with three-week hypofractionated whole breast irradiation in early breast cancer

    Get PDF
    Objectives: A prospective study was conducted to assess the acute and late toxicity of hypofractionated whole breast irradiation with a weekly concomitant boost for women with early breast cancer (EBC). Methods: Women with EBC who underwent breast-conserving surgery were eligible. A dose of 40Gy in 15 fractions over 3 weeks was delivered to the whole breast with a concomitant weekly boost to the post-operative cavity of 3Gy in three fractions. Toxicity was graded using the Radiation Therapy Oncology Group (RTOG) acute toxicity and RTOG/EORTC late toxicity scales. Results: A total of 67 women were enrolled with a median age of 49 years (range 31–69). Median follow-up was 25 months (range 11–34). Acute skin reactions included grade (G) 1 (n = 47, 70%), G2 (n = 10, 13%), and G3 (n = 1, 1.5%). Late skin toxicity was observed in 13 patients (19%), all of whom experienced G1 toxicity only. On multivariable analysis, diabetes mellitus was predictive of acute skin toxicity (p = 0.003), while age less than 50 years (p = 0.029) and diabetes mellitus (p = 0.013) were predictive of late skin toxicity. Conclusions: Whole breast irradiation with concomitant weekly boost appears feasible and safe. Further investigation is required to fully evaluate this schedule as an alternative to conventional whole breast irradiation with a sequential boost

    Repeated BCG treatment of mouse bladder selectively stimulates small GTPases and HLA antigens and inhibits single-spanning uroplakins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite being a mainstay for treating superficial bladder carcinoma and a promising agent for interstitial cystitis, the precise mechanism of Bacillus Calmette-Guerin (BCG) remains poorly understood. It is particularly unclear whether BCG is capable of altering gene expression beyond its well-recognized pro-inflammatory effects and how this relates to its therapeutic efficacy. The objective of this study was to determine differentially expressed genes in the mouse bladder following repeated intravesical BCG therapy.</p> <p>Methods</p> <p>Mice were transurethrally instilled with BCG or pyrogen-free on days 1, 7, 14, and 21. Seven days after the last instillation, urothelia along with the submucosa was removed and amplified ds-DNA was prepared from control- and BCG-treated bladder mucosa and used to generate suppression subtractive hybridization (SSH). Plasmids from control- and BCG-specific differentially expressed clones and confirmed by Virtual Northern were then purified and the inserts were sequenced and annotated. Finally, chromatin immune precipitation combined with real-time polymerase chain reaction assay (ChIP/Q-PCR) was used to validate SSH-selected transcripts.</p> <p>Results</p> <p>Repeated intravesical BCG treatment induced an up regulation of genes associated with antigen presentation (B2M, HLA-A, HLA-DQA1, HLA-DQB2, HLA-E, HLA-G, IGHG, and IGH) and representatives of two IFNÎł-induced small GTPase families: the GBPs (GBP1, GBP2, and GBP5) and the p47GTPases (IIGTP1, IIGTP2, and TGTP). Genes expressed in saline-treated bladders but down-regulated by BCG included: the single-spanning uroplakins (UPK3a and UPK2), SPRR2G, GSTM5, and RSP 19.</p> <p>Conclusion</p> <p>Here we introduced a hypothesis-generator approach to determine key genes involved in the urothelium/sumbmucosa responses to BCG therapy. Urinary bladder responds to repeated BCG treatment by up-regulating not only antigen presentation-related genes, but also GBP and p47 small GTPases, both potentially serving to mount a resistance to the replication of the <it>Mycobacterium</it>. It will be of tremendous future interest to determine whether these immune response cascades play a role in the anti-cancer effects exerted by BCG.</p

    Registration of 'Ok102' wheat

    Get PDF
    Peer reviewedPlant and Soil SciencesEntomology and Plant PathologyBiochemistry and Molecular Biolog

    Intracellular Trafficking of Guanylate-Binding Proteins Is Regulated by Heterodimerization in a Hierarchical Manner

    Get PDF
    Guanylate-binding proteins (GBPs) belong to the dynamin family of large GTPases and represent the major IFN-Îł-induced proteins. Here we systematically investigated the mechanisms regulating the subcellular localization of GBPs. Three GBPs (GBP-1, GBP-2 and GBP-5) carry a C-terminal CaaX-prenylation signal, which is typical for small GTPases of the Ras family, and increases the membrane affinity of proteins. In this study, we demonstrated that GBP-1, GBP-2 and GBP-5 are prenylated in vivo and that prenylation is required for the membrane association of GBP-1, GBP-2 and GBP-5. Using co-immunoprecipitation, yeast-two-hybrid analysis and fluorescence complementation assays, we showed for the first time that GBPs are able to homodimerize in vivo and that the membrane association of GBPs is regulated by dimerization similarly to dynamin. Interestingly, GBPs could also heterodimerize. This resulted in hierarchical positioning effects on the intracellular localization of the proteins. Specifically, GBP-1 recruited GBP-5 and GBP-2 into its own cellular compartment and GBP-5 repositioned GBP-2. In addition, GBP-1, GBP-2 and GBP-5 were able to redirect non-prenylated GBPs to their compartment in a prenylation-dependent manner. Overall, these findings prove in vivo the ability of GBPs to dimerize, indicate that heterodimerization regulates sub-cellular localization of GBPs and underscore putative membrane-associated functions of this family of proteins

    TRUST IN CROSS-CULTURAL B2B FINANCIAL SERVICE RELATIONSHIPS: THE ROLE OF SHARED VALUES

    Get PDF
    This is the accepted version of the following article: Houjeir, R. & Brennan, R. J, 'Trust in cross-cultural b2b financial service relationships: The role of shared values', Journal of Financial Services Marketing, June 2016, Vol 21(2): 90-102 The final publication is available at Springer via http://dx.doi.org/10.1057/fsm.2016.4Trust in business-to-business supplier–customer relationships in financial services is an area of considerable research interest. The bulk of prior empirical research in this field has concentrated on trust in business relationships within a Western cultural context. However, shared values are acknowledged to be an important antecedent to trust. The premise of this study is that in circumstances where there are substantial cultural differences between parties to a supplier–customer relationship, these differences will be reflected in shared values, which will in turn be reflected in differences in the nature of trust. A qualitative study was conducted among business bankers and their corporate clients in the context of the United Arab Emirates. In all 170 respondents were interviewed; of these, 160 were paired respondents, that is, where a client and banker from the same business relationship were interviewed (yielding 80 interview dyads). Substantial differences with respect to trust were found between relationships that involved only Emiratis, those that involved Emiratis and non-Emiratis, and those that involved only non-Emiratis. For Emiratis mutual trust is substantially based on family and clan ties and exhibits strongly affective characteristics. For non-Emiratis trust is largely based on business considerations, and exhibits strongly cognitive characteristics.Peer reviewedFinal Accepted Versio

    Guanylate-binding protein 1 expression from embryonal endothelial progenitor cells reduces blood vessel density and cellular apoptosis in an axially vascularised tissue-engineered construct

    Get PDF
    BACKGROUND: Guanylate binding protein-1 (GBP-1) is a large GTPase which is actively secreted by endothelial cells. It is a marker and intracellular inhibitor of endothelial cell proliferation, migration, and invasion. We previously demonstrated that stable expression of GBP-1 in murine endothelial progenitor cells (EPC) induces their premature differentiation and decreases their migration capacity in vitro and in vivo. The goal of the present study was to assess the antiangiogenic capacity of EPC expressing GBP-1 (GBP-1-EPC) and their impact on blood vessel formation in an axially vascularized 3-D bioartificial construct in vivo. RESULTS: Functional in vitro testing demonstrated a significant increase in VEGF secretion by GBP-1-EPC after induction of cell differentiation. Undifferentiated GBP-1-EPC, however, did not secrete increased levels of VEGF compared to undifferentiated control EPC expressing an empty vector (EV-EPC). In our In vivo experiments, we generated axially vascularized tissue-engineered 3-D constructs. The new vascular network arises from an arterio-venous loop (AVL) embedded in a fibrin matrix inside a separation chamber. Total surface area of the construct as calculated from cross sections was larger after transplantation of GBP-1-EPC compared to control EV-EPC. This indicated reduced formation of fibrovascular tissue and less resorption of fibrin matrix compared to constructs containing EV-EPC. Most notably, the ratio of blood vessel surface area over total construct surface area in construct cross sections was significantly reduced in the presence of GBP-1-EPC. This indicates a significant reduction of blood vessel density and thereby inhibition of blood vessel formation from the AVL constructs caused by GBP-1. In addition, GBP-1 expressed from EPC significantly reduced cell apoptosis compared to GBP-1-negative controls. CONCLUSION: Transgenic EPC expressing the proinflammatory antiangiogenic GTPase GBP-1 can reduce blood vessel density and inhibit apoptosis in a developing bioartificial vascular network and may become a new powerful tool to manipulate angiogenetic processes in tissue engineering and other pathological conditions such as tumour angiogenesis
    • …
    corecore