10 research outputs found
A randomised controlled trial of Heparin versus EthAnol Lock THerapY for the prevention of Catheter Associated infecTion in Haemodialysis patients – the HEALTHY-CATH trial
<p>Abstract</p> <p>Background</p> <p>Tunnelled central venous dialysis catheter use is significantly limited by the occurrence of catheter-related infections. This randomised controlled trial assessed the efficacy of a 48 hour 70% ethanol lock vs heparin locks in prolonging the time to the first episode of catheter related blood stream infection (CRBSI).</p> <p>Methods</p> <p>Patients undergoing haemodialysis (HD) via a tunnelled catheter were randomised 1:1 to once per week ethanol locks (with two heparin locks between other dialysis sessions) vs thrice per week heparin locks.</p> <p>Results</p> <p>Observed catheter days in the heparin (n=24) and ethanol (n=25) groups were 1814 and 3614 respectively. CRBSI occurred at a rate of 0.85 vs. 0.28 per 1000 catheter days in the heparin vs ethanol group by intention to treat analysis (incident rate ratio (IRR) for ethanol vs. heparin 0.17; 95%CI 0.02-1.63; p=0.12). Flow issues requiring catheter removal occurred at a rate of 1.6 vs 1.4 per 1000 catheter days in the heparin and ethanol groups respectively (IRR 0.85; 95% CI 0.20-3.5 p =0.82 (for ethanol vs heparin).</p> <p>Conclusions</p> <p>Catheter survival and catheter-related blood stream infection were not significantly different but there was a trend towards a reduced rate of infection in the ethanol group. This study establishes proof of concept and will inform an adequately powered multicentre trial to definitively examine the efficacy and safety of ethanol locks as an alternative to current therapies used in the prevention of catheter-associated blood stream infections in patients dialysing with tunnelled catheters.</p> <p>Trial Registration</p> <p>Australian New Zealand Clinical Trials Registry ACTRN12609000493246</p
Silica and other materials as supports in liquid chromatography. Chromatographic tests and their importance for evaluating these supports. Part I
Reversed-phase liquid chromatography (RP-HPLC) has become a powerful and widely employed technique in the separation and analysis of a great variety of compounds with different functionalities. The most common type of stationary phase for RP-HPLC consists of nonpolar, hydrophobic organic species (e.g., octyl, octadecyl) attached by siloxane bonds to the surface of a silica support. In the first part of this article, a description of the many beneficial properties that make porous silica the most employed support in RP-HPLC will be presented, starting from the synthesis of silica. It is noteworthy that the chromatographic properties of the final column are strictly correlated to the preparation type. A silica surface possesses a number of attractive properties, but also some drawbacks. Unreacted or residual silanols interact with basic compounds and can induced peak tailing, which means a loss in chromatographic performance. This problem has lead many manufactures to produce stationary phases with reduced silanol activity which improve dramatically the peak shape of basic compounds. In the second part of this review, different approaches are proposed to obtain less reactive stationary phases