80 research outputs found

    Topological Entropy for Shifts of Finite Type Over Z\mathbb{Z} and Tree

    Full text link
    We study the topological entropy of hom tree-shifts and show that, although the topological entropy is not conjugacy invariant for tree-shifts in general, it remains invariant for hom tree higher block shifts. In doi:10.1016/j.tcs.2018.05.034 and doi:10.3934/dcds.2020186, Petersen and Salama demonstrated the existence of topological entropy for tree-shifts and h(TX)≥h(X)h(\mathcal{T}_X) \geq h(X), where TX\mathcal{T}_X is the hom tree-shift derived from XX. We characterize a necessary and sufficient condition when the equality holds for the case where XX is a shift of finite type. In addition, two novel phenomena have been revealed for tree-shifts. There is a gap in the set of topological entropy of hom tree-shifts of finite type, which makes such a set not dense. Last but not least, the topological entropy of a reducible hom tree-shift of finite type is equal to or larger than that of its maximal irreducible component

    Game Solving with Online Fine-Tuning

    Full text link
    Game solving is a similar, yet more difficult task than mastering a game. Solving a game typically means to find the game-theoretic value (outcome given optimal play), and optionally a full strategy to follow in order to achieve that outcome. The AlphaZero algorithm has demonstrated super-human level play, and its powerful policy and value predictions have also served as heuristics in game solving. However, to solve a game and obtain a full strategy, a winning response must be found for all possible moves by the losing player. This includes very poor lines of play from the losing side, for which the AlphaZero self-play process will not encounter. AlphaZero-based heuristics can be highly inaccurate when evaluating these out-of-distribution positions, which occur throughout the entire search. To address this issue, this paper investigates applying online fine-tuning while searching and proposes two methods to learn tailor-designed heuristics for game solving. Our experiments show that using online fine-tuning can solve a series of challenging 7x7 Killall-Go problems, using only 23.54% of computation time compared to the baseline without online fine-tuning. Results suggest that the savings scale with problem size. Our method can further be extended to any tree search algorithm for problem solving. Our code is available at https://rlg.iis.sinica.edu.tw/papers/neurips2023-online-fine-tuning-solver.Comment: Accepted by the 37th Conference on Neural Information Processing Systems (NeurIPS 2023

    MiniZero: Comparative Analysis of AlphaZero and MuZero on Go, Othello, and Atari Games

    Full text link
    This paper presents MiniZero, a zero-knowledge learning framework that supports four state-of-the-art algorithms, including AlphaZero, MuZero, Gumbel AlphaZero, and Gumbel MuZero. While these algorithms have demonstrated super-human performance in many games, it remains unclear which among them is most suitable or efficient for specific tasks. Through MiniZero, we systematically evaluate the performance of each algorithm in two board games, 9x9 Go and 8x8 Othello, as well as 57 Atari games. For two board games, using more simulations generally results in higher performance. However, the choice of AlphaZero and MuZero may differ based on game properties. For Atari games, both MuZero and Gumbel MuZero are worth considering. Since each game has unique characteristics, different algorithms and simulations yield varying results. In addition, we introduce an approach, called progressive simulation, which progressively increases the simulation budget during training to allocate computation more efficiently. Our empirical results demonstrate that progressive simulation achieves significantly superior performance in two board games. By making our framework and trained models publicly available, this paper contributes a benchmark for future research on zero-knowledge learning algorithms, assisting researchers in algorithm selection and comparison against these zero-knowledge learning baselines. Our code and data are available at https://rlg.iis.sinica.edu.tw/papers/minizero.Comment: Submitted to IEEE Transactions on Games, under revie

    Relatively preserved functional immune capacity with standard COVID-19 vaccine regimen in people living with HIV

    Get PDF
    IntroductionPeople living with HIV (PLWH) are at a higher risk of severe disease with SARS-CoV-2 virus infection. COVID-19 vaccines are effective in most PLWH. However, suboptimal immune responses to the standard two-shot regimen are a concern, especially for those with moderate to severe immunodeficiency. An additional dose is recommended as part of the extended primary series in Taiwan. Herein, we study the efficacy of this additional shot in PLWH with mild immunodeficiency compared to that in healthy non-HIV people.MethodsIn total, 72 PLWH that were asymptomatic or with mild immunodeficiency (CD4 counts ≥200/mm3) and suppressed virology, and 362 healthcare workers of our hospital were enrolled. None of the participants had a history of SARS-CoV-2 infection. They received mRNA-1273 and ChAdOx1 vaccines. Anti-SARS-CoV-2 neutralizing and anti-Spike IgG antibodies, and SARS-CoV-2-specific T cell responses were evaluated.ResultsThe standard two-shot regimen elicited lower responses in PLWH than the healthcare workers without HIV infection, although the difference was statistically insignificant. They had comparable levels of neutralizing and anti-Spike antibodies and comparable effector CD4+ and CD8+ T cell responses. The third shot boosted the SARS-CoV-2 immunity significantly more with better antibody responses and higher IFN-γ and IL-2 responses of the CD4+ and CD8+ T cells in PLWH compared to those without HIV. Upon in vitro stimulation with extracted Wuhan strain SARS-CoV-2 proteins, CD8+ T cells from PLWH after 3 shots had more durable effector responses than the non-HIV controls with extended time of stimulation.ConclusionThis subtle difference between PLWH and non-HIV people implied immune exhaustion with two shots in non-HIV people. Slightly compromised immunity in PLWH indeed preserved the functional capacity for further response to the third shot or natural infection

    Successful treatment of chronic hepatitis B and D with pegylated-interferon plus entecavir

    Get PDF
    Interferon-based regimen has been used to treat hepatitis D virus (HDV) super-infection on top of hepatitis B virus (HBV) carriers; however, viral relapse is frequent after stopping therapy. Recently, quantitative hepatitis B surface antigen (qHBsAg) was introduced to help the management of chronic hepatitis B (CHB). Little is known about its role in the treatment of HBV and HDV dual infection. Herein, we reported a 45-year-old male HBV carrier with HDV co-infection who received combination therapy of pegylated-interferon α-2a plus entecavir. The qHBsAg level was adopted as the treatment guidance and a consolidation therapy of 12 months was continued after HBsAg loss. The patient achieved HBsAg seroconversion with HDV RNA undetectable after 35 months of combination therapy and sustained therapeutic response 12 months post-therapy. Therefore, personalized response-guided therapy by using qHBsAg may be an option for the treatment for HBV and HDV dual infection

    Hybrid Ring- and Tree-Topology RoF Transmission System with Disconnection Protection

    No full text
    This paper proposes a hybrid ring- and tree-topology radio over fiber (RoF) transmission system with self-disconnection protection that can support the high distribution density of base stations (BSs) in a metropolitan area and strengthen the network quality of service through self-disconnection protection. The number of supportable BS in the system can be increased significantly by integrating the time- and wavelength-division multiplexing techniques and properly utilizing a new-generation single-line bidirectional add/drop multiplexer (SBOADM) into the proposed system. Moreover, when the ring–fiber link of the system is interrupted for any reason, the system operator can recover the broken connections quickly only by transforming an optical switch state at the CO end to allow the downlink optical signals to transmit along the clockwise and counterclockwise directions of the ring–fiber link simultaneously. In this case, the downstream optical signals can be delivered to each set of BS-groups through the two-way transmission characteristics of the SBOADM automatically, and the uplink optical signals, originally, from each set of BS-groups can be transmitted back to the CO end along the opposite direction of the downlink signal-routing path. In this way, the interference caused by fiber breakage can be avoided immediately, and the entire transport system can be reconnected to ensure the quality of network services. Our experimental results prove that the overall transmission performances are similar to those under normal circumstances

    Hybrid Ring- and Tree-Topology RoF Transmission System with Disconnection Protection

    No full text
    This paper proposes a hybrid ring- and tree-topology radio over fiber (RoF) transmission system with self-disconnection protection that can support the high distribution density of base stations (BSs) in a metropolitan area and strengthen the network quality of service through self-disconnection protection. The number of supportable BS in the system can be increased significantly by integrating the time- and wavelength-division multiplexing techniques and properly utilizing a new-generation single-line bidirectional add/drop multiplexer (SBOADM) into the proposed system. Moreover, when the ring–fiber link of the system is interrupted for any reason, the system operator can recover the broken connections quickly only by transforming an optical switch state at the CO end to allow the downlink optical signals to transmit along the clockwise and counterclockwise directions of the ring–fiber link simultaneously. In this case, the downstream optical signals can be delivered to each set of BS-groups through the two-way transmission characteristics of the SBOADM automatically, and the uplink optical signals, originally, from each set of BS-groups can be transmitted back to the CO end along the opposite direction of the downlink signal-routing path. In this way, the interference caused by fiber breakage can be avoided immediately, and the entire transport system can be reconnected to ensure the quality of network services. Our experimental results prove that the overall transmission performances are similar to those under normal circumstances
    • …
    corecore