33 research outputs found

    Non-equilibrium Thermodynamics of Spacetime

    Full text link
    It has previously been shown that the Einstein equation can be derived from the requirement that the Clausius relation dS = dQ/T hold for all local acceleration horizons through each spacetime point, where dS is one quarter the horizon area change in Planck units, and dQ and T are the energy flux across the horizon and Unruh temperature seen by an accelerating observer just inside the horizon. Here we show that a curvature correction to the entropy that is polynomial in the Ricci scalar requires a non-equilibrium treatment. The corresponding field equation is derived from the entropy balance relation dS =dQ/T+dS_i, where dS_i is a bulk viscosity entropy production term that we determine by imposing energy-momentum conservation. Entropy production can also be included in pure Einstein theory by allowing for shear viscosity of the horizon.Comment: 4 pages. Dedicated to Rafael Sorkin on the occasion of his 60th birthda

    Gravitational Waves from Sub-lunar Mass Primordial Black Hole Binaries - A New Probe of Extradimensions

    Full text link
    In many braneworld models, gravity is largely modified at the electro-weak scale ~ 1TeV. In such models, primordial black holes (PBHs) with lunar mass M ~ 10^{-7}M_sun might have been produced when the temperature of the universe was at ~ 1TeV. If a significant fraction of the dark halo of our galaxy consists of these lunar mass PBHs, a huge number of BH binaries will exist in our neighborhood. Third generation detectors such as EURO can detect gravitational waves from these binaries, and can also determine their chirp mass. With a new detector designed to be sensitive at high frequency bands greater than 1 kHz, the existence of extradimensions could be confirmed.Comment: 4 pages, 1 figure, typos correcte

    Cosmological quintessence accretion onto primordial black holes : conditions for their growth to the supermassive scale

    Full text link
    In this work we revisit the growth of small primordial black holes (PBHs) immersed in a quintessential field and/or radiation to the supermassive black hole (SMBHs) scale. We show the difficulties of scenarios in which such huge growth is possible. For that purpose we evaluated analytical solutions of the differential equations (describing mass evolution) and point out the strong fine tuning for that conclusions. The timescale for growth in a model with a constant quintessence flux is calculated and we show that it is much bigger than the Hubble time.The fractional gain of the mass is further evaluated in other forms, including quintessence and/or radiation. We calculate the cosmological density Ω\Omega due to quintessence necessary to grow BHs to the supermassive range and show it to be much bigger than one. We also describe the set of complete equations analyzing the evolution of the BH+quintessence universe, showing some interesting effects such the quenching of the BH mass growth due to the evolution of the background energy. Additional constraints obtained by using the Holographic Bound are also described. The general equilibrium conditions for evaporating/accreting black holes evolving in a quintessence/radiation universe are discussed in the Appendix.Comment: 21 pp., 2 Figures, To appear in IJMP

    Primordial black holes in braneworld cosmologies: astrophysical constraints

    Get PDF
    In two recent papers we explored the modifications to primordial black hole physics when one moves to the simplest braneworld model, Randall--Sundrum type II. Both the evaporation law and the cosmological evolution of the population can be modified, and additionally accretion of energy from the background can be dominant over evaporation at high energies. In this paper we present a detailed study of how this impacts upon various astrophysical constraints, analyzing constraints from the present density, from the present high-energy photon background radiation, from distortion of the microwave background spectrum, and from processes affecting light element abundances both during and after nucleosynthesis. Typically, the constraints on the formation rate of primordial black holes weaken as compared to the standard cosmology if black hole accretion is unimportant at high energies, but can be strengthened in the case of efficient accretion.Comment: 17 pages RevTeX4 file with three figures incorporated; final paper in series astro-ph/0205149 and astro-ph/0208299. Minor changes to match version accepted by Physical Review

    Particle motion and gravitational lensing in the metric of a dilaton black hole in a de Sitter universe

    Get PDF
    We consider the metric exterior to a charged dilaton black hole in a de Sitter universe. We study the motion of a test particle in this metric. Conserved quantities are identified and the Hamilton-Jacobi method is employed for the solutions of the equations of motion. At large distances from the black hole the Hubble expansion of the universe modifies the effective potential such that bound orbits could exist up to an upper limit of the angular momentum per mass for the orbiting test particle. We then study the phenomenon of strong field gravitational lensing by these black holes by extending the standard formalism of strong lensing to the non-asymptotically flat dilaton-de Sitter metric. Expressions for the various lensing quantities are obtained in terms of the metric coefficients.Comment: 8 pages, RevTex, 1 eps figures; discussion improved; typos corrected; references adde

    Primordial black holes in braneworld cosmologies: Accretion after formation

    Get PDF
    We recently studied the formation and evaporation of primordial black holes in a simple braneworld cosmology, namely Randall-Sundrum Type II. Here we study the effect of accretion from the cosmological background onto the black holes after formation. While it is generally believed that in the standard cosmology such accretion is of negligible importance, we find that during the high-energy regime of braneworld cosmology accretion can be the dominant effect and lead to a mass increase of potentially orders of magnitude. However, unfortunately the growth is exponentially sensitive to the accretion efficiency, which cannot be determined accurately. Since accretion becomes unimportant once the high-energy regime is over, it does not affect any constraints expressed at the time of black hole evaporation, but it can change the interpretation of those constraints in terms of early Universe formation rates.Comment: 6 pages RevTeX4 file. Extension to discussion of thermal balance and grey-body factor

    Primordial black holes in braneworld cosmologies: Formation, cosmological evolution and evaporation

    Get PDF
    We consider the population evolution and evaporation of primordial black holes in the simplest braneworld cosmology, Randall-Sundrum type II. We demonstrate that black holes forming during the high-energy phase of this theory (where the expansion rate is proportional to the density) have a modified evaporation law, resulting in a longer lifetime and lower temperature at evaporation, while those forming in the standard regime behave essentially as in the standard cosmology. For sufficiently large values of the AdS radius, the high-energy regime can be the one relevant for primordial black holes evaporating at key epochs such as nucleosynthesis and the present. We examine the formation epochs of such black holes, and delimit the parameter regimes where the standard scenario is significantly modified.Comment: 9 pages RevTeX4 file with four figures incorporated, minor changes to match published versio

    Braneworld black holes in cosmology and astrophysics

    Full text link
    The braneworld description of our universe entails a large extra dimension and a fundamental scale of gravity that might be lower by several orders of magnitude compared to the Planck scale. An interesting consequence of the braneworld scenario is in the nature of spherically symmetric vacuum solutions to the brane gravitational field equations which could represent black holes with properties quite distinct compared to ordinary black holes in 4-dimensions. We discuss certain key features of some braneworld black hole geometries. Such black holes are likely to have diverse cosmological and astrophysical ramifications. The cosmological evolution of primordial braneworld black holes is described highlighting their longevity due to modified evaporation and effective accretion of radiation during the early braneworld high energy era. Observational abundance of various evaporation products of the black holes at different eras impose constraints on their initial mass fraction. Surviving primordial black holes could be candidates of dark matter present in galactic haloes. We discuss gravitational lensing by braneworld black holes. Observables related to the relativistic images of strong field gravitational lensing could in principle be used to distinguish between different braneworld black hole metrics in future observations.Comment: Latex, 35 pages, Review article published in Int. J. Mod. Phys. D (uses stylefile ws-ijmpd.cls); typos corrected; references adde

    Interaction of a TeV Scale Black Hole with the Quark-Gluon Plasma at LHC

    Get PDF
    If the fundamental Planck scale is near a TeV, then parton collisions with high enough center-of-mass energy should produce black holes. The production rate for such black holes has been extensively studied for the case of a proton-proton collision at \sqrt s = 14 TeV and for a lead-lead collision at \sqrt s = 5.5 TeV at LHC. As the parton energy density is much higher at lead-lead collisions than in pp collisions at LHC, one natural question is whether the produced black holes will be able to absorb the partons formed in the lead-lead collisions and eventually `eat' the quark-gluon plasma formed at LHC. In this paper, we make a quantitative analysis of this possibility and find that since the energy density of partons formed in lead-lead collisions at LHC is about 500 GeV/fm^3, the rate of absorption for one of these black holes is much smaller than the rate of evaporation. Hence, we argue that black holes formed in such collisions will decay very quickly, and will not absorb very many nearby partons. More precisely, we show that for the black hole mass to increase via parton absorption at the LHC the typical energy density of quarks and gluons should be of the order of 10^{10} GeV/fm^3. As LHC will not be able to produce such a high energy density partonic system, the black hole will not be able to absorb a sufficient number of nearby partons before it decays. The typical life time of the black hole formed at LHC is found to be a small fraction of a fm/c.Comment: 7 pages latex (double column), 3 eps figure

    Randall-Sundrum black holes and strange stars

    Get PDF
    It has recently been suggested that the existence of bare strange stars is incompatible with low scale gravity scenarios. It has been claimed that in such models, high energy neutrinos incident on the surface of a bare strange star would lead to catastrophic black hole growth. We point out that for the flat large extra dimensional case, the parts of parameter space which give rise to such growth are ruled out by other methods. We then go on to show in detail how black holes evolve in the the Randall-Sundrum two brane scenario where the extra dimensions are curved. We find that catastrophic black hole growth does not occur in this situation either. We also present some general expressions for the growth of five dimensional black holes in dense media.Comment: 16 pages, more numerics has lead to different path to same conclusion. Accepted in PR
    corecore