4 research outputs found
Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis.
To access publisher's full text version of this article click on the hyperlink belowOsteoarthritis has a highly negative impact on quality of life because of the associated pain and loss of joint function. Here we describe the largest meta-analysis so far of osteoarthritis of the hip and the knee in samples from Iceland and the UK Biobank (including 17,151 hip osteoarthritis patients, 23,877 knee osteoarthritis patients, and more than 562,000 controls). We found 23 independent associations at 22 loci in the additive meta-analyses, of which 16 of the loci were novel: 12 for hip and 4 for knee osteoarthritis. Two associations are between rare or low-frequency missense variants and hip osteoarthritis, affecting the genes SMO (rs143083812, frequency 0.11%, odds ratio (OR) = 2.8, P = 7.9 × 1
Predicted loss and gain of function mutations in ACO1 are associated with erythropoiesis.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadHemoglobin is the essential oxygen-carrying molecule in humans and is regulated by cellular iron and oxygen sensing mechanisms. To search for novel variants associated with hemoglobin concentration, we performed genome-wide association studies of hemoglobin concentration using a combined set of 684,122 individuals from Iceland and the UK. Notably, we found seven novel variants, six rare coding and one common, at the ACO1 locus associating with either decreased or increased hemoglobin concentration. Of these variants, the missense Cys506Ser and the stop-gained Lys334Ter mutations are specific to eight and ten generation pedigrees, respectively, and have the two largest effects in the study (EffectCys506Ser = -1.61 SD, CI95 = [-1.98, -1.35]; EffectLys334Ter = 0.63 SD, CI95 = [0.36, 0.91]). We also find Cys506Ser to associate with increased risk of persistent anemia (OR = 17.1, P = 2 × 10-14). The strong bidirectional effects seen in this study implicate ACO1, a known iron sensing molecule, as a major homeostatic regulator of hemoglobin concentration.UCL Hospitals NIHR Biomedical Research Centr
A homozygous loss-of-function mutation leading to CYBC1 deficiency causes chronic granulomatous disease
Mutations in genes encoding NAPDH oxidase subunits are known to be causative for the primary immunodeficiency chronic granulomatous disease (CGD). Here, the authors identify CYBC1 mutations in patients with CGD and show that CYBC1 is important for formation of the NADPH complex and respiratory burst