150 research outputs found
Tuning of Turbine Blades: A Theoretical Approach
Introduction In this paper a method is presented which relates geometrical changes to eigenfrequency changes of a structure. This method is general and based on perturbation theory. It is therefore applicable to every calculation method which can compute eigenfrequencies and eigenmodes. In this paper the method is tested and compared with Montoya's calculations A typical example of a structure where the resonance frequencies are of importance is a turbine blade. Much effort has been made to develop accurate prediction methods for the eigenfrequencies of turbine blades. If one or more of the eigenfrequencies are close to an exciting frequency it might be necessary to change the geometry of the blade so that the risk for resonance excitation is minimized. This change can be made on an already produced blade or in the design stage of a new turbine blade. In the first case only a removal of material can be considered, whereas in the second case an addition of material is possible. The question that then arises, is where and how much the geometry of the blade should be changed to achieve the desired changes in the resonance frequencies. The present method makes it possible to easily and quickly determine the necessary geometrical change. The perturbation method has been tested on two different geometries, a rectangular beam and a turbine blade. The results from the perturbation method have been compared to Montoya's calculation
A randomized controlled trial of pharmacist-led therapeutic carbohydrate and energy restriction in type 2 diabetes
Type 2 diabetes can be treated, and sometimes reversed, with dietary interventions; however, strategies to implement these interventions while addressing medication changes are lacking. We conducted a 12-week pragmatic, community-based parallel-group randomized controlled trial (ClinicalTrials.gov: NCT03181165) evaluating the effect of a low-carbohydrate (<50 g), energy-restricted diet (~850-1100 kcal/day; Pharm-TCR; n = 98) compared to treatment-as-usual (TAU; n = 90), delivered by community pharmacists, on glucose-lowering medication use, cardiometabolic health, and health-related quality of life. The Pharm-TCR intervention was effective in reducing the need for glucose-lowering medications through complete discontinuation of medications (35.7%; n = 35 vs. 0%; n = 0 in TAU; p < 0.0001) and reduced medication effect score compared to TAU. These reductions occurred concurrently with clinically meaningful improvements in hemoglobin A1C, anthropometrics, blood pressure, and triglycerides (all p < 0.0001). These data indicate community pharmacists are a viable and innovative option for implementing short-term nutritional interventions for people with type 2 diabetes, particularly when medication management is a safety concern
Random-phase Approximation Treatment Of Edge Magnetoplasmons: Edge-state Screening And Nonlocality
A random-phase approximation (RPA) treatment of edge magnetoplasmons (EMP) is
presented for strong magnetic fields, low temperatures, and integer filling
factors \nu. It is valid for negligible dissipation and lateral confining
potentials smooth on the scale of the magnetic length \ell_{0} but sufficiently
steep that the Landau-level (LL) flattening can be neglected. LL coupling,
screening by edge states, and nonlocal contributions to the current density are
taken into account. In addition to the fundamental mode with typical dispersion
relation \omega\sim q_x \ln(q_{x}), fundamental modes with {\it acoustic}
dispersion relation \omega\sim q_x are obtained for \nu>2. For \nu=1,2 a {\bf
dipole} mode exists, with dispersion relation \omega\sim q_x^3, that is
directly related to nonlocal responses.Comment: Text 12 pages in Latex/Revtex format, 4 Postscript figure
The Tri-State High School Band Symposium: An Honor Band Experience for the Region\u27s Finest Wind and Percussion Players and Their Directors
A sampler concert conducted by Robert Sheldon & Mathew Inkster.https://digitalcommons.usu.edu/music_programs/1110/thumbnail.jp
A Thermodynamically-Based Mesh Objective Work Potential Theory for Predicting Intralaminar Progressive Damage and Failure in Fiber-Reinforced Laminates
A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed that matrix microdamage is the dominant damage mechanism in continuous fiber-reinforced polymer matrix laminates, and its evolution is controlled with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Typically, failure evolution (i.e., post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method (FEM) setting. Therefore, consistent character element lengths are introduced into the formulation of the evolution of the three failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs is derived. The theory is implemented into commercial FEM software. Objectivity of total energy dissipated during the failure process, with regards to refinements in the FEM mesh, is demonstrated. The model is also verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared to the experiments
Short term non-invasive ventilation post-surgery improves arterial blood-gases in obese subjects compared to supplemental oxygen delivery - a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>In the immediate postoperative period, obese patients are more likely to exhibit hypoxaemia due to atelectasis and impaired respiratory mechanics, changes which can be attenuated by non-invasive ventilation (NIV). The aim of the study was to evaluate the duration of any effects of early initiation of short term pressure support NIV vs. traditional oxygen delivery via venturi mask in obese patients during their stay in the PACU.</p> <p>Methods</p> <p>After ethics committee approval and informed consent, we prospectively studied 60 obese patients (BMI 30-45) undergoing minor peripheral surgery. Half were randomly assigned to receive short term NIV during their PACU stay, while the others received routine treatment (supplemental oxygen via venturi mask). Premedication, general anaesthesia and respiratory settings were standardized. We measured arterial oxygen saturation by pulse oximetry and blood gas analysis on air breathing. Inspiratory and expiratory lung function was measured preoperatively (baseline) and at 10 min, 1 h, 2 h, 6 h and 24 h after extubation, with the patient supine, in a 30 degrees head-up position. The two groups were compared using repeated-measure analysis of variance (ANOVA) and t-test analysis. Statistical significance was considered to be P < 0.05.</p> <p>Results</p> <p>There were no differences at the first assessment. During the PACU stay, pulmonary function in the NIV group was significantly better than in the controls (p < 0.0001). Blood gases and the alveolar to arterial oxygen partial pressure difference were also better (p < 0.03), but with the addition that overall improvements are of questionable clinical relevance. These effects persisted for at least 24 hours after surgery (p < 0.05).</p> <p>Conclusion</p> <p>Early initiation of short term NIV during in the PACU promotes more rapid recovery of postoperative lung function and oxygenation in the obese. The effect lasted 24 hours after discontinuation of NIV. Patient selection is necessary in order to establish clinically relevant improvements.</p> <p>Trial Registration#</p> <p>DRKS00000751; <url>http://www.germanctr.de</url></p
Computational Implementation of a Thermodynamically Based Work Potential Model For Progressive Microdamage and Transverse Cracking in Fiber-Reinforced Laminates
A continuum-level, dual internal state variable, thermodynamically based, work potential model, Schapery Theory, is used capture the effects of two matrix damage mechanisms in a fiber-reinforced laminated composite: microdamage and transverse cracking. Matrix microdamage accrues primarily in the form of shear microcracks between the fibers of the composite. Whereas, larger transverse matrix cracks typically span the thickness of a lamina and run parallel to the fibers. Schapery Theory uses the energy potential required to advance structural changes, associated with the damage mechanisms, to govern damage growth through a set of internal state variables. These state variables are used to quantify the stiffness degradation resulting from damage growth. The transverse and shear stiffness of the lamina are related to the internal state variables through a set of measurable damage functions. Additionally, the damage variables for a given strain state can be calculated from a set of evolution equations. These evolution equations and damage functions are implemented into the finite element method and used to govern the constitutive response of the material points in the model. Additionally, an axial failure criterion is included in the model. The response of a center-notched, buffer strip-stiffened panel subjected to uniaxial tension is investigated and results are compared to experiment
Defining family business: a closer look at definitional heterogeneity
Researchers have used a myriad of different definitions in seeking to explain the heterogeneity of family firms and their unique behavior; however, no widely-accepted definition exists today. Definitional clarity in any field is essential to provide (a) the basis for the analysis of performance both spatially and temporally and (b) the foundation upon which theories, frameworks and models are developed. We provide a comprehensive analysis of prior research and identify and classify 82 definitions of family business. We then review and evaluate five key theoretical perspectives in family business to identify how these have shaped and informed the definitions employed in the field and duly explain family firm heterogeneity. Finally, we provide a conceptual diagram to inform the choice of definition in different research settings
Recommended from our members
Z-inertial fusion energy: power plant final report FY 2006.
This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques
- …