13 research outputs found

    An alternative branch of the nonsense-mediated decay pathway

    No full text
    The T-cell receptor (TCR) locus undergoes programmed rearrangements that frequently generate premature termination codons (PTCs). The PTC-bearing transcripts derived from such nonproductively rearranged genes are dramatically downregulated by the nonsense-mediated decay (NMD) pathway. Here, we show that depletion of the NMD factor UPF3b does not impair TCRβ NMD, thereby distinguishing it from classical NMD. Depletion of the related factor UPF3a, by itself or in combination with UPF3b, also has no effect on TCRβ NMD. Mapping experiments revealed the identity of TCRβ sequences that elicit a switch to UPF3b dependence. This regulation is not a peculiarity of TCRβ, as we identified many wild-type genes, including one essential for NMD, that transcribe NMD-targeted mRNAs whose downregulation is little or not affected by UPF3a and UPF3b depletion. We propose that we have uncovered an alternative branch of the NMD pathway that not only degrades aberrant mRNAs but also regulates normal mRNAs, including one that participates in a negative feedback loop controlling the magnitude of NMD

    Cross Talk between Immunoglobulin Heavy-Chain Transcription and RNA Surveillance during B Cell Development

    No full text
    Immunoglobulin (Ig) genes naturally acquire frequent premature termination codons during the error-prone V(D)J recombination process. Although B cell differentiation is linked to the expression of productive Ig alleles, the transcriptional status of nonfunctionally recombined alleles remains unclear. Here, we tracked transcription and posttranscriptional regulation for both Ig heavy-chain (IgH) alleles in mice carrying a nonfunctional knock-in allele. We show that productively and nonproductively VDJ-rearranged alleles are transcribed throughout B cell development, carry similar active chromatin marks, and even display equivalent RNA polymerase II (RNAPII) loading after B cell stimulation. Hence, these results challenge the idea that the repositioning of one allele to heterochromatin could promote the silencing of nonproductive alleles. Interestingly, the efficiency of downstream RNA surveillance mechanisms fluctuates according to B cell activation and terminal differentiation: unspliced nonfunctional transcripts accumulate in primary B cells, while B cell activation promotes IgH transcription, RNA splicing, and nonsense-mediated mRNA decay (NMD). Altogether, IgH transcription and RNA splicing rates determine by which RNA surveillance mechanisms a B cell can get rid of nonproductive IgH mRNAs

    A UPF3-mediated regulatory switch that maintains RNA surveillance

    No full text
    Nonsense-mediated decay (NMD) is an RNA decay pathway that downregulates aberrant mRNAs and a subset of normal mRNAs. The regulation of NMD is poorly understood. Here we identify a regulatory mechanism acting on two related UPF (up-frameshift) factors crucial for NMD: UPF3A and UPF3B. This regulatory mechanism, which reduces the level of UPF3A in response to the presence of UPF3B, is relieved in individuals harboring UPF3B mutations, leading to strongly increased steady-state levels of UPF3A. UPF3A compensates for the loss of UPF3B by regulating several NMD target transcripts, but it can also impair NMD, as it competes with the stronger NMD activator UPF3B for binding to the essential NMD factor UPF2. This deleterious effect of UPF3A protein is prevented by its destabilization using a conserved UPF3B-dependent mechanism. Together, our results suggest that UPF3A levels are tightly regulated by a post-transcriptional switch to maintain appropriate levels of NMD substrates in cells containing different levels of UPF3B.Wai-Kin Chan, Angela D Bhalla, Hervé Le Hir, Lam Son Nguyen, Lulu Huang, Jozef Gécz and Miles F Wilkinso
    corecore