46 research outputs found
Disturbance of Social Hierarchy by an Invasive Species: A Gene Transcription Study
BACKGROUND: Ecological and evolutionary changes in native populations facing invasion by exotic species are increasingly reported. Recently, it has been shown that competition with exotic rainbow trout (Oncorhynchus mykiss) disrupts dominance hierarchies within groups of native Atlantic salmon (Salmo salar). The genetic and molecular actors underlying phenotypic plasticity are poorly understood. METHODOLOGY: Here, we aimed at identifying the genetic and molecular actors contributing to this plastic loss of dominance hierarchies as well as at identifying genes implicated in behaviours related to social dominance. By using microarrays, we compared the genome-wide gene transcription profiles in brains of dominant versus subordinate juvenile Atlantic salmon in presence or absence of a competitive rainbow trout. PRINCIPAL FINDINGS: Adding the trout competitor resulted in dominant and subordinate salmon being more similar, both behaviourally and at the level of brain gene transcription patterns. Genes for which transcription levels differed between dominant and subordinate salmon in the absence of exotic trout were mainly over-expressed in dominant salmon and included genes implicated in protein turnover, neuronal structural change and oxygen transport. CONCLUSIONS/SIGNIFICANCE: Our study provides one of the few examples demonstrating a close interplay between behavioural plasticity and gene transcription, therefore contributing to the understanding of the molecular mechanisms underlying these processes in an ecologically relevant context
Gluconeogenic adaptations in Cancer Magister
The periodic requirement for a new chitincus excskeleton imposes a large biosynthetic lead on the metabolism of crustaceans, with the hypodermis facing the brunt of the load. Since the freshly molted animal is highly susceptible to predation, the mechanisms for efficient gluccnecgenesis in support of chitin synthesis are of definite survival value to the organism. Measurements of enzyme activities in the hypodermis , gill and muscle of Cancer magisrter indicate that the hypodermis and muscle undergo considerable metabolic changes during the melt cycle. Freshmolt hypodermis shows elevated specific activities of both the gluconeogenic and the glycolytic enzymes, while freshmolt muscle shows decreased levels of the glycolytic and increased levels of the gluconeogenic enzymes. Hypodermis maintains a highly gluconeogenic orientation throughout the melt cycle.
Phosphoglycerate kinase is considered to be one of the bifuncticnal enzymes in the glycolytic pathway, but the kinetic characteristics of the previously studied enzymes are ill suited for function in a gluconeogenic system. Since the inter melt and freshmolt muscle and hypodernis present a variety of metabolic poises (i. e. ranging 'from highly gluconeogenic tc highly glycolytic), I studied the control of phos|lidglycerate kinase in these tissue,s:. I found that the inte^0^^iusc 1 e enzyme shows kinetics much like those of the mammalian muscle and the yeast enzyme, with a high sensitivity to MgADP/ADP inhibition (MgADP Ki = 1.3 x 10â»â”M) and a relatively lew affinity for ATP as a substrate (Km = 2.03 x 10-âŽM). By contrast, the freshmolt hypodermal enzyme shows a considerably decreased sensitivity to Mg ADP/ADP inhibition (Mg ADP Ki = 2 x10-âŽM) and a considerably increased affinity for ATP (Km = 6.8 x 10-â”M). The freshmolt muscle enzyme also shares these changed affinities. The intermolt hypodernal phosphoglycerate kinase shows the decreased sensitivity to Kg ADP/ADP inhibition but shares the ATP affinity of the intermolt muscle enzyme. The kinetic characteristics of the freshmolt hypodermal and muscle enzymes reduce the susceptibility of the enzymes to inhibition by MgADP and facilitate the reversal of the reaction for gluccneogenesis.
The control of pyruvate kinase is integral to the control of both glycolysis and gluconeogenesis. In glycolysis, it forms the second major control site; in gluconeogenesis, it is one of the prime determinants of the rate of gluconeogenesis from lactate and amino acids. Muscle and hypodermal pyruvate kinases from Cancer magister are distinct proteins, on the basis of isoelectric points, kinetic characteristics, and thermal denaturation behavior. In contrast to the phcsphoglycerate kinase system, there are no pronounced differences between freshmolt and intermolt forms. Muscle pyruvate kinase is activated by FDP, inhibited by KgATP, arginine phosphate, Mg2citrate, tryptophan and is also sensitive to some inhibition by alanine, âș--glycerolphosphate, Mg-malate and âș- ketoglutarate. The muscle enzyme has a high affinity for PEP (Km = 0.1 mM) and the addition of 0.05 mM FDP drops the PEP Km to 0.05 mM. In comparison with other muscle pyruvate kinases, the enzyme is quite sensitive to MgATF inhibition (Ki = 1.8 mM) and shows FDP reversal of the inhibition. Arginine phosphate inhibition is competitive with ADP, and is not reversed by FDP. The reversal of the reaction accounts for only 0.5% of the forward reaction. Although high levels of ATP and arginine phosphate strongly inhibit the reaction, the inhibition is not sufficient to allow net flux through the low levels of the bypass enzymes present in the muscle of freshmolt animals. Thus, muscle pyruvate kinase has kinetic characteristics which suit it for function in the control of glycolysis, but do not allow gluconeogenic flux past the reaction locus.
In contrast, hypodermal pyruvate kinase is a consplex protein capable of making large transitions between high activity during oxidation of carbohydrate substrates and virtually no activity during gluconeogenesis from lactate and amino acids. Hypodermal pyruvate kinase exists in twc conformational states, one a high affinity state (PK I) and the ether a low affinity state (PK II), PK I has a Km for PEP of 0.1 mM and a Ka for FDP of 1.3 x 10â»â”. PK II has a Km for PEP of 0.55 mM and a Ka for FDP of 9 x 10â»âž. For both forms, FDP facilitates the binding of PEP, Eofh forms are sensitive to MgATP inhibition and show FDP reversal of the inhibition, PK II is more sensitive to inhibition by alanine, serine, and Mg2citrate. For PK II, FDP alters the inhibition due to these compounds, changing the interactions between these inhibitors and both PEE and ADP. Incubation of PK II with 0.05 mK FDP produces PK I. Prolonged dialysis of PK I leads to an enzyme with the characteristics of PK II. The levels of FDP associated with PK I are higher than the levels associated with PK II. During gluconeogenesis, the FDP levels in the cell are low. This would shift the equilibrium between the two forms towards PK II. Since physiological levels of PEP, ADP, ATP, alanine, and serine limit PK II activity to less than 0.5% of maximal, considerable flux through the phosphcenolpyruvate carboxykinase and pyruvate carboxylase bypass would be feasible. The rise in FDP levels during inhibition of gluconeogenesis would shift the equilibrium in favor of PK I. This shift would immediately raise pyruvate kinase activity from less than 0.5% to around 50% of maximal activity. This, coupled with the other changes in metabolite levels during an inhibition of gluconeogenesis, would lead to a marked activation of pyruvate kinase activity. These conformational states allow rapid changes in flux through the reaction, and thus would allow flexible and responsive regulation of this important glycolytic and gluconeogenic control site. Thus, both the phcsphoglycerate kinase and pyruvate kinase present in the hypodermis of Cancer magister have special characteristics which facilitate efficient gluconeogenesis.
To elucidate the possible importance of ions in regulating the activity of the above enzymes, I measured the levels of sodium, potassium, magnesium, and calcium in the muscle and hypodermis of intermolt and freshmolt animals. I found that the extracellular' space of- the hypodermis is considerably higher than that of the muscle (45% versus 12%) , but that there was no variation between intermolt and freshmolt tissue extracellular space. While freshmolt muscle sodium concentrations were significantly higher than intermolt sodium concentrations, none of the other ions showed significant differences between molt cycle stages. However, there were significant differences between the ionic concentrations in hypodermis and muscle. Hypodermis shewed higher calcium levels and lower potassium levels than muscle in both freshmolt and intermolt animals. Although icnic changes do not play a role in differential regulation of enzyme activity during the molt cycle, the ionic concentrations present in these tissues are such that the ions could set guidelines for the activity of phosphoglycerate kinase, pyruvate kinase, phosphofructokinase, and fructose diphosphatase in these tissues.Science, Faculty ofZoology, Department ofGraduat
Why are some mitochondria more powerful than others: Insights from comparisons of muscle mitochondria from three terrestrial vertebrates
We studied the molecular composition of muscle mitochondria to evaluate whether the contents of cytochromes or adenine nucleotide translocase (ANT) or phospholipid acyl compositions reflect differences in mitochondrial oxidative capacities. We isolated mitochondria from three vertebrates of similar size and preferred temperature, the rat (Rattus norvegicus), the cane toad (Bufo marinus) and the bearded dragon lizard (Pogona vitticeps). Mitochondrial oxidative capacities were higher in rats and cane toads than in bearded dragon, whether rates were expressed relative to protein, cytochromes or ANT. Inter-specific differences were least pronounced when rates were expressed relative to cytochrome A, a component of cytochrome C oxidase (CCO), or ANT. In mitochondria from rat and cane toad, cytochrome A was more abundant than C followed by B and then C1, while in bearded dragon mitochondria, the cytochromes were present in roughly equal levels. Analysis of correlations between mitochondrial oxidative capacities and macromolecular components revealed that cytochrome A explained at least half of the intra- and inter-specific variability in substrate oxidation rates. ANT levels were an excellent correlate of state 3 rates while phospholipid contents were correlated with state 4 rates. As the % poly-unsaturation and the % 20:4n-6 in mitochondrial phospholipids were equivalent in toads and rats, and exceeded the levels in lizards, they may contribute to the inter-specific differences in oxidative capacities. We suggest that the numbers of CCO and ANT together with the poly-unsaturation of phospholipids explain the higher oxidative capacities in muscle mitochondria from rats and cane toads
Effect of day length on oxidative capacities of mitochondria from red muscle of rainbow trout (Oncorhynchus mykiss)
International audienceIn nature, seasons may be more reliably announced by changes in photoperiod than in temperature. To evaluate the role of day length in setting oxidative capacities of trout muscle mitochondria, we acclimated trout to summer (15 °C, 16L:8D), winter (5 °C, 8L:16D) and mixed conditions (15 °C, 8L:16D). Maximal oxidative capacities of isolated mitochondria at 5 and 15 °C were higher in mixed than summer conditions and higher again in winter conditions. At 5 °C, state 4 rates changed little with acclimation state whereas at 15 °C state 4 rates were lower in summer than in mixed or winter conditions. Using concentrations of the adenylate nucleotide translocase as the denominator for these rates gave much the same conclusions. By using inhibitors to block flux at specific points in the electron transport chain, we found that flux through Complexes IIâIV was lowest in summer acclimated trout, increased upon acclimation to mixed and to winter conditions. Flux through complex IV was similar in trout acclimated to summer and mixed conditions, but increased significantly with acclimation to winter conditions. Flux through complex IV was 1.5 fold higher than state 3 rates for summer-acclimated trout but was similar to state 3 rates in trout acclimated to mixed or winter conditions. Our results indicate that a reduction in day length initiates increases in mitochondrial oxidative capacity typically associated with cold acclimation and that acclimation to both cold temperatures and short day lengths enhanced these changes. The overall similarity of the responses of state 3, of flux through complexes IIâIV and of flux through complex IV suggests that a generalised mechanism such as changes in the phospholipid composition of the inner mitochondrial membrane may coordinate these changes
Plasticity of oxidative metabolism in variable climates: molecular mechanisms
Converting food to chemical energy (ATP) that is usable by cells is a principal requirement to sustain life. The rate of ATP production has to be sufficient for housekeeping functions, such as protein synthesis and maintaining membrane potentials, as well as for growth and locomotion. Energy metabolism is temperature sensitive, and animals respond to environmental variability at different temporal levels, from withinâindividual to evolutionary timescales. Here we review principal molecular mechanisms that underlie control of oxidative ATP production in response to climate variability. Nuclear transcription factors and coactivators control expression of mitochondrial proteins and abundance of mitochondria. Fatty acid and phospholipid concentrations of membranes influence the activity of membraneâbound proteins as well as the passive leak of protons across the mitochondrial membrane. Passive proton leak as well as proteinâmediated proton leak across the inner mitochondrial membrane determine the efficacy of ATP production but are also instrumental in endothermic heat production and as a defense against reactive oxygen species. Both transcriptional mechanisms and membrane composition interact with environmental temperature and diet, and this interaction between diet and temperature in determining mitochondrial function links the two major environmental variables that are affected by changing climates. The limits to metabolic plasticity could be set by the production of reactive oxygen species leading to cellular damage, limits to substrate availability in mitochondria, and a disproportionally large increase in proton leak over ATP productio