217 research outputs found

    Thin layer shearing of a highly plastic clay

    Get PDF
    International audienceShearing tests with a thin layer of clay between filter slabs render possible large and cyclic deformations with drainage. In the pressure range of 100 kPa they serve to validated visco-hypoplastic constitutive relations. This theory is also confirmed by tests with up to 14 MPa and super-imposed anti-plane cycles. After this kind of seismic disturbance the clay stabilizes if the ratio of permanent stresses is undercritical. Otherwise a spontaneous acceleration occurs after a delay. This could help to understand critical phenomena with clay smears in faults

    The anisotropy of granular materials

    Get PDF
    The effect of the anisotropy on the elastoplastic response of two dimensional packed samples of polygons is investigated here, using molecular dynamics simulation. We show a correlation between fabric coefficients, characterizing the anisotropy of the granular skeleton, and the anisotropy of the elastic response. We also study the anisotropy induced by shearing on the subnetwork of the sliding contacts. This anisotropy provides an explanation to some features of the plastic deformation of granular media.Comment: Submitted to PR

    Development of Stresses in Cohesionless Poured Sand

    Full text link
    The pressure distribution beneath a conical sandpile, created by pouring sand from a point source onto a rough rigid support, shows a pronounced minimum below the apex (`the dip'). Recent work of the authors has attempted to explain this phenomenon by invoking local rules for stress propagation that depend on the local geometry, and hence on the construction history, of the medium. We discuss the fundamental difference between such approaches, which lead to hyperbolic differential equations, and elastoplastic models, for which the equations are elliptic within any elastic zones present .... This displacement field appears to be either ill-defined, or defined relative to a reference state whose physical existence is in doubt. Insofar as their predictions depend on physical factors unknown and outside experimental control, such elastoplastic models predict that the observations should be intrinsically irreproducible .... Our hyperbolic models are based instead on a physical picture of the material, in which (a) the load is supported by a skeletal network of force chains ("stress paths") whose geometry depends on construction history; (b) this network is `fragile' or marginally stable, in a sense that we define. .... We point out that our hyperbolic models can nonetheless be reconciled with elastoplastic ideas by taking the limit of an extremely anisotropic yield condition.Comment: 25 pages, latex RS.tex with rspublic.sty, 7 figures in Rsfig.ps. Philosophical Transactions A, Royal Society, submitted 02/9

    UKIDSS detections of cool brown dwarfs - proper motions of 14 known >>T5 dwarfs and discovery of three new T5.5-T6 dwarfs

    Full text link
    AIMS: We contribute to improving the census of cool brown dwarfs (late-T and Y dwarfs) in the immediate solar neighbourhood. METHODS: By combining near-infrared (NIR) data of UKIDSS with mid-infrared WISE and other available NIR (2MASS) and red optical (SDSS zz-band) multi-epoch data we detect high proper motion (HPM) objects with colours typical of late spectral types (>>T5). We use NIR low-resolution spectroscopy for the classification of new candidates. RESULTS: We determined new proper motions for 14 known T5.5-Y0 dwarfs, many of them being significantly (>>2-10 times) more accurate than previous ones. We detected three new candidates, ULAS J0954+0623, ULAS J1152+0359, and ULAS J1204-0150, by their HPMs and colours. Using previously published and new UKIDSS positions of the known nearby T8 dwarf WISE J0254+0223 we improved its trigonometric parallax to 165±\pm20 mas. For the three new objects we obtained NIR spectroscopic follow-up with LBT/LUCIFER classifying them as T5.5 and T6 dwarfs. With their estimated spectroscopic distances of about 25-30 pc, their proper motions of about 430-650 mas/yr lead to tangential velocities of about 50-80 km/s typical of the Galactic thin disk population.Comment: 5 pages, 2 figures, plus 3 pages with 5 tables (online material), accepted for publication in Astronomy and Astrophysic

    Galaxy Distances in the Nearby Universe: Corrections For Peculiar Motions

    Get PDF
    By correcting the redshift--dependent distances for peculiar motions through a number of peculiar velocity field models, we recover the true distances of a wide, all-sky sample of nearby galaxies (~ 6400 galaxies with velocities cz<5500 km/s), which is complete up to the blue magnitude B=14 mag. Relying on catalogs of galaxy groups, we treat ~2700 objects as members of galaxy groups and the remaining objects as field galaxies. We model the peculiar velocity field using: i) a cluster dipole reconstruction scheme; ii) a multi--attractor model fitted to the Mark II and Mark III catalogs of galaxy peculiar velocities. According to Mark III data the Great Attractor has a smaller influence on local dynamics than previously believed, whereas the Perseus-Pisces and Shapley superclusters acquire a specific dynamical role. Remarkably, the Shapley structure, which is found to account for nearly half the peculiar motion of the Local Group, is placed by Mark III data closer to the zone of avoidance with respect to its optical position. Our multi--attractor model based on Mark III data favors a cosmological density parameter Omega ~ 0.5 (irrespective of a biasing factor of order unity). Differences among distance estimates are less pronounced in the ~ 2000 - 4000 km/s distance range than at larger or smaller distances. In the last regions these differences have a serious impact on the 3D maps of the galaxy distribution and on the local galaxy density --- on small scales.Comment: 24 pages including (9 eps figures and 7 tables). Figures 1,2,3,4 are available only upon request. Accepted by Ap

    The Exotic Eclipsing Nucleus of the Ring Planetary Nebula SuWt2

    Full text link
    SuWt2 is a planetary nebula (PN) consisting of a bright ionized thin ring seen nearly edge-on. It has a bright (V=12) central star, too cool to ionize the PN, which we discovered to be an eclipsing binary. A spectrum from IUE did not reveal a UV source. We present extensive ground-based photometry and spectroscopy of the central binary collected over the ensuing two decades, resulting in the determination that the orbital period of the eclipsing pair is 4.9 d, and consists of two nearly identical A1 V stars, each of mass ~2.7 M_sun. The physical parameters of the A stars, combined with evolutionary tracks, show that both are in the short-lived "blue-hook" evolutionary phase that occurs between the main sequence and the Hertzsprung gap, and that the age of the system is about 520 Myr. One puzzle is that the stars' rotational velocities are different from each other, and considerably slower than synchronous with the orbital period. It is possible that the center-of-mass velocity of the eclipsing pair is varying with time, suggesting that there is an unseen third orbiting body in the system. We propose a scenario in which the system began as a hierarchical triple, consisting of a ~2.9 M_sun star orbiting the close pair of A stars. Upon reaching the AGB stage, the primary engulfed the pair into a common envelope, leading to a rapid contraction of the orbit and catastrophic ejection of the envelope into the orbital plane. In this picture, the exposed core of the initial primary is now a white dwarf of ~0.7 M_sun, orbiting the eclipsing pair, which has already cooled below the detectability possible by IUE at our derived distance of 2.3 kpc and a reddening of E(B-V)=0.40. The SuWt2 system may be destined to perish as a Type Ia supernova. (Abridged)Comment: 60 pages, 11 figure, to appear in the Astronomical Journa

    The Nearby Optical Galaxy Sample: The Local Galaxy Luminosity Function

    Get PDF
    In this paper we derive the galaxy luminosity function from the Nearby Optical Galaxy (NOG) sample, which is a nearly complete, magnitude-limited (B<14 mag), all-sky sample of nearby optical galaxies (~6400 galaxies with cz<5500 km/s). For this local sample, we use galaxy distance estimates based on different peculiar velocity models. Therefore, the derivation of the luminosity function is carried out using the locations of field and grouped galaxies in real distance space. The local field galaxy luminosity function in the B system is well described by a Schechter function. The exact values of the Schechter parameters slightly depend on the adopted peculiar velocity field models. The shape of the luminosity function of spiral galaxies does not differ significantly from that of E-S0 galaxies. On the other hand, the late-type spirals and irregulars have a very steeply rising luminosity function towards the faint end, whereas the ellipticals appreciably decrease in number towards low luminosities. The presence of galaxy systems in the NOG sample does not affect significantly the field galaxy luminosity function, since environmental effects on the total luminosity function appear to be marginal.Comment: 35 pages including 7 figures and 4 tables. Accepted for publication in Ap
    corecore