6 research outputs found

    A Top-Down Approach to Infer and Compare Domain-Domain Interactions across Eight Model Organisms

    Get PDF
    Knowledge of specific domain-domain interactions (DDIs) is essential to understand the functional significance of protein interaction networks. Despite the availability of an enormous amount of data on protein-protein interactions (PPIs), very little is known about specific DDIs occurring in them. Here, we present a top-down approach to accurately infer functionally relevant DDIs from PPI data. We created a comprehensive, non-redundant dataset of 209,165 experimentally-derived PPIs by combining datasets from five major interaction databases. We introduced an integrated scoring system that uses a novel combination of a set of five orthogonal scoring features covering the probabilistic, evolutionary, evidence-based, spatial and functional properties of interacting domains, which can map the interacting propensity of two domains in many dimensions. This method outperforms similar existing methods both in the accuracy of prediction and in the coverage of domain interaction space. We predicted a set of 52,492 high-confidence DDIs to carry out cross-species comparison of DDI conservation in eight model species including human, mouse, Drosophila, C. elegans, yeast, Plasmodium, E. coli and Arabidopsis. Our results show that only 23% of these DDIs are conserved in at least two species and only 3.8% in at least 4 species, indicating a rather low conservation across species. Pair-wise analysis of DDI conservation revealed a ‘sliding conservation’ pattern between the evolutionarily neighboring species. Our methodology and the high-confidence DDI predictions generated in this study can help to better understand the functional significance of PPIs at the modular level, thus can significantly impact further experimental investigations in systems biology research

    Abstract Conserved motifs in voltage-sensing and pore-forming modules of voltage-gated ion channel proteins

    No full text
    Voltage-gated ion channels (VGCs) mediate selective diffusion of ions across cell membranes to enable many vital cellular processes. Three-dimensional structure data are lacking for VGC proteins; hence, to better understand their function, there is a need to identify the conserved motifs using sequence analysis methods. In this study, we have used a profile-to-profile alignment method to identify several new conserved motifs specific to each transmembrane segment (TMS) of the voltage-sensing and the pore-forming modules of Ca 2+, Na +, and K + channel subfamilies. For Ca 2+ and Na +, the functional theme of motif conservation is similar in all segments while they differ with those of the K + channel proteins. Nevertheless, the conservation is strikingly similar in the S4 segment of the voltage-sensing module across all subfamilies. In each subfamily and for each TMS, we have identified conserved motifs/residues and correlated their functional significance and disease associations in human, using mutational data from the literature

    MitoProteome: mitochondrial protein sequence database and annotation system

    No full text
    MitoProteome is an object-relational mitochondrial protein sequence database and annotation system. The initial release contains 847 human mitochondrial protein sequences, derived from public sequence databases and mass spectrometric analysis of highly purified human heart mitochondria. Each sequence is manually annotated with primary function, subfunction and subcellular location, and extensively annotated in an automated process with data extracted from external databases, including gene information from LocusLink and Ensembl; disease information from OMIM; protein–protein interaction data from MINT and DIP; functional domain information from Pfam; protein fingerprints from PRINTS; protein family and family-specific signatures from InterPro; structure data from PDB; mutation data from PMD; BLAST homology data from NCBI NR; and proteins found to be related based on LocusLink and SWISS-PROT references and sequence and taxonomy data. By highly automating the processes of maintaining the MitoProteome Protein List and extracting relevant data from external databases, we are able to present a dynamic database, updated frequently to reflect changes in public resources. The MitoProteome database is publicly available at http://www.mitoproteome.org/. Users may browse and search MitoProteome, and access a complete compilation of data relevant to each protein of interest, cross-linked to external databases
    corecore