70 research outputs found
Spontaneous mechanical oscillation of a DC driven single crystal
There is a large interest to decrease the size of mechanical oscillators
since this can lead to miniaturization of timing and frequency referencing
devices, but also because of the potential of small mechanical oscillators as
extremely sensitive sensors. Here we show that a single crystal silicon
resonator structure spontaneously starts to oscillate when driven by a constant
direct current (DC). The mechanical oscillation is sustained by an
electrothermomechanical feedback effect in a nanobeam, which operates as a
mechanical displacement amplifier. The displacement of the resonator mass is
amplified, because it modulates the resistive heating power in the nanobeam via
the piezoresistive effect, which results in a temperature variation that causes
a thermal expansion feedback-force from the nanobeam on the resonator mass.
This self-amplification effect can occur in almost any conducting material, but
is particularly effective when the current density and mechanical stress are
concentrated in beams of nano-scale dimensions
Electromechanical devices utilising thin Si diaphragms
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
Proximal Tubular Secretion of Creatinine by Organic Cation Transporter OCT2 in Cancer Patients
Purpose: Knowledge of transporters responsible for the renal secretion of creatinine is key to a proper interpretation of serum creatinine and/or creatinine clearance as markers of renal function in cancer patients receiving chemotherapeutic agents. Experimental Design: Creatinine transport was studied in transfected HEK293 cells in vitro and in wildtype mice and age-matched organic cation transporter 1 and 2-deficient [Oct1/2(-/-)] mice ex vivo and in vivo. Clinical pharmacogenetic and transport inhibition studies were done in two separate cohorts of cancer patients. Results: Compared with wild-type mice, creatinine clearance was significantly impaired in Oct1/2(-/-) mice. Furthermore, creatinine inhibited organic cation transport in freshly isolated proximal tubules from wild-type mice and humans, but not in those from Oct1/2(-/-) mice. In a genetic association analysis (n = 590), several polymorphisms around the OCT2/SLC22A2 gene locus, including rs2504954 (P = 0.000873), were significantly associated with age-adjusted creatinine levels. Furthermore, in ca Conclusions: Collectively, this study shows that OCT2 plays a decisive role in the renal secretion of creatinine. This process can be inhibited by OCT2 substrates, which impair the usefulness of creatinine as a marker of renal function. Clin Cancer Res; 18(4); 1101-8. (C)2012 AACR
- …