18 research outputs found

    The Final State of Black Strings and p-Branes, and the Gregory-Laflamme Instability

    Full text link
    It is shown that the usual entropy argument for the Gregory-Laflamme (GL) instability for somesome appropriate black strings and pp-branes gives surprising agreement up to a few percent. This may provide a strong support to the GL's horizon fragmentation, which would produce the array of higher-dimensional Schwarzschild-type's black holes finally. On the other hand, another estimator for the size of the black hole end-state relative to the compact dimension indicates a second order (i.e., smooth) phase transition for some otherother appropriate compactifications and total dimension of spacetime wherein the entropy argument is not appropriate. In this case, Horowitz-Maeda-type's non-uniform black strings or pp-branes can be the final state of the GL instability.Comment: More emphasis on a second order phase transition. The computation result is unchange

    On non-uniform smeared black branes

    Full text link
    We investigate charged dilatonic black pp-branes smeared on a transverse circle. The system can be reduced to neutral vacuum black branes, and we perform static perturbations for the reduced system to construct non-uniform solutions. At each order a single master equation is derived, and the Gregory-Laflamme critical wavelength is determined. Based on the non-uniform solutions, we discuss thermodynamic properties of this system and argue that in a microcanonical ensemble the non-uniform smeared branes are entropically disfavored even near the extremality, if the spacetime dimension is D13+pD \le 13 +p, which is the critical dimension for the vacuum case. However, the critical dimension is not universal. In a canonical ensemble the vacuum non-uniform black branes are thermodynamically favorable at D>12+pD > 12+p, whereas the non-uniform smeared branes are favorable at D>14+pD > 14+p near the extremality.Comment: 24 pages, 2 figures; v2: typos corrected, submitted to Class.Quant.Gra

    Instability of brane cosmological solutions with flux compactifications

    Full text link
    We discuss the stability of the higher-dimensional de Sitter (dS) brane solutions with two-dimensional internal space in the Einstein-Maxwel theory. We show that an instability appears in the scalar-type perturbations with respect to the dS spacetime. We derive a differential relation which has the very similar structure to the ordinary laws of thermodynamics as an extension of the work for the six-dimensional model [20]. In this relation, the area of dS horizon (integrated over the two internal dimensions) exactly behaves as the thermodynamical entropy. The dynamically unstable solutions are in the thermodynamically unstable branch. An unstable dS compactification either evolves toward a stable configuration or two-dimensional internal space is decompactified. These dS brane solutions are equivalent to the accelerating cosmological solutions in the six-dimensional Einstein-Maxwell-dilaton theory via dimensional reduction. Thus, if the seed higher-dimensional solution is unstable, the corresponding six-dimensional solution is also unstable. From the effective four-dimensional point of view, a cosmological evolution from an unstable cosmological solution in higher dimensions may be seen as a process of the transition from the initial cosmological inflation to the current dark energy dominated Universe.Comment: 11 pages, 3 figures, references added, to appear in CQ

    Non-uniform Black Strings with Schwarzschild-(Anti-)de Sitter Foliation

    Get PDF
    We present some exact non-uniform black string solutions of 5-dimensional pure Einstein gravity as well as Einstein-Maxwell-dilaton theory at arbitrary dilaton coupling. The solutions share the common property that their 4-dimensional slices are Schwarzchild-(anti-)de Sitter spacetimes. The pure gravity solution is also generalized to spacetimes of dimensions higher than 5 to get non-uniform black branes.Comment: LaTeX 14 pages, 3 eps figures. V2: version appeared in CQ

    Anti-de Sitter black holes, perfect fluids, and holography

    Full text link
    We consider asymptotically anti-de Sitter black holes in dd-spacetime dimensions in the thermodynamically stable regime. We show that the Bekenstein-Hawking entropy and its leading order corrections due to thermal fluctuations can be reproduced by a weakly interacting fluid of bosons and fermions (`dual gas') in Δ=α(d2)+1\Delta=\alpha(d-2)+1 spacetime dimensions, where the energy-momentum dispersion relation for the constituents of the fluid is assumed to be ϵ=κpα\epsilon = \kappa p^\alpha. We examine implications of this result for entropy bounds and the holographic hypothesis.Comment: Minor changes to match published version. 9 Pages, Revte

    Semiclassical String Solutions on deformed NS5-brane Backgrounds and New Plane wave

    Full text link
    We study different Penrose limits of supergravity solution of NS5-brane in the presence of RR field. Although in the case of NS5-brane we get a 4-dimensional plane wave, in the case with RR field we will get two different plane waves; a 4-dimensional and a 3-dimensional one. These plane wave solutions are the backgrounds that a particular string solution feels at one loop approximation. Using the one loop correction one can identify a particular subsector of LST/deformed LST which is dual to type II string theories on these plane waves.Comment: 18 pages, latex, v2: Minor changes, typos correcte

    Instabilities of Black Strings and Branes

    Get PDF
    We review recent progress on the instabilities of black strings and branes both for pure Einstein gravity as well as supergravity theories which are relevant for string theory. We focus mainly on Gregory-Laflamme instabilities. In the first part of the review we provide a detailed discussion of the classical gravitational instability of the neutral uniform black string in higher dimensional gravity. The uniform black string is part of a larger phase diagram of Kaluza-Klein black holes which will be discussed thoroughly. This phase diagram exhibits many interesting features including new phases, non-uniqueness and horizon-topology changing transitions. In the second part, we turn to charged black branes in supergravity and show how the Gregory-Laflamme instability of the neutral black string implies via a boost/U-duality map similar instabilities for non- and near-extremal smeared branes in string theory. We also comment on instabilities of D-brane bound states. The connection between classical and thermodynamic stability, known as the correlated stability conjecture, is also reviewed and illustrated with examples. Finally, we examine the holographic implications of the Gregory-Laflamme instability for a number of non-gravitational theories including Yang-Mills theories and Little String Theory.Comment: 119 pages, 16 figures. Invited review for Classical and Quantum Gravit

    Lectures on holographic methods for condensed matter physics

    Full text link
    These notes are loosely based on lectures given at the CERN Winter School on Supergravity, Strings and Gauge theories, February 2009 and at the IPM String School in Tehran, April 2009. I have focused on a few concrete topics and also on addressing questions that have arisen repeatedly. Background condensed matter physics material is included as motivation and easy reference for the high energy physics community. The discussion of holographic techniques progresses from equilibrium, to transport and to superconductivity.Comment: 1+85 pages. 15 figures. v2: typos fixed and references added. v3: another typo fixe
    corecore