3 research outputs found
Deja Vu: semantics-aware recording and replay of high-speed eye tracking and interaction data to support cognitive studies of software engineering tasksâmethodology and analyses
The paper introduces a fundamental technological problem with collecting high-speed eye tracking data while studying software engineering tasks in an integrated development environment. The use of eye trackers is quickly becoming an important means to study software developers and how they comprehend source code and locate bugs. High quality eye trackers can record upwards of 120 to 300 gaze points per second. However, it is not always possible to map each of these points to a line and column position in a source code file (in the presence of scrolling and file switching) in real time at data rates over 60 gaze points per second without data loss. Unfortunately, higher data rates are more desirable as they allow for finer granularity and more accurate study analyses. To alleviate this technological problem, a novel method for eye tracking data collection is presented. Instead of performing gaze analysis in real time, all telemetry (keystrokes, mouse movements, and eye tracker output) data during a study is recorded as it happens. Sessions are then replayed at a much slower speed allowing for ample time to map gaze point positions to the appropriate file, line, and column to perform additional analysis. A description of the method and corresponding tool, Deja Vu, is presented. An evaluation of the method and tool is conducted using three different eye trackers running at four different speeds (60 Hz, 120 Hz, 150 Hz, and 300 Hz). This timing evaluation is performed in Visual Studio, Eclipse, and Atom IDEs. Results show that Deja Vu can playback 100% of the data recordings, correctly mapping the gaze to corresponding elements, making it a well-founded and suitable post processing step for future eye tracking studies in software engineering. Finally, a proof of concept replication analysis of four tasks from two previous studies is performed. Due to using the Deja Vu approach, this replication resulted in richer collected data and improved on the number of distinct syntactic categories that gaze was mapped on in the code
State\u2010of\u2010the\u2010art in Multi\u2010Light Image Collections for Surface Visualization and Analysis
Multi-Light Image Collections (MLICs), i.e., stacks of photos of a scene acquired with a fixed viewpoint and a varying surface illumination, provide large amounts of visual and geometric information. In this survey, we provide an up-to-date integrative view of MLICs as a mean to gain insight on objects through the analysis and visualization of the acquired data. After a general overview of MLICs capturing and storage, we focus on the main approaches to produce representations usable for visualization and analysis. In this context, we first discuss methods for direct exploration of the raw data. We then summarize approaches that strive to emphasize shape and material details by fusing all acquisitions in a single enhanced image. Subsequently, we focus on approaches that produce relightable images through intermediate representations. This can be done both by fitting various analytic forms of the light transform function, or by locally estimating the parameters of physically plausible models of shape and reflectance and using them for visualization and analysis. We finally review techniques that improve object understanding by using illustrative approaches to enhance relightable models, or by extracting features and derived maps. We also review how these methods are applied in several, main application domains, and what are the available tools to perform MLIC visualization and analysis. We finally point out relevant research issues, analyze research trends, and offer guidelines for practical applications