19 research outputs found

    m-MTDATA on Au(111): Spectroscopic Evidence of Molecule-Substrate Interactions

    Get PDF
    The starburst π-conjugated molecule based on triphenylamine (TPA) building blocks, 4,4â€Č,4″-tris(N-3-ethylphenyl-N-phenylamino)triphenylamine (C57H48N4, m-MTDATA), is widely used in optoelectronic devices due to its electron-donating properties. The electronic structure of m-MTDATA adsorbed on an Au(111) surface was investigated by means of photoelectron spectroscopy (PES) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The results were further compared to gas-phase measurements and DFT calculations. Our results clearly indicate a significant molecule-substrate interaction that induces considerable modifications on the electronic structure of the adsorbate compared to the isolated molecule. The energy level alignment analysis shows that the HOMO-LUMO gap is filled by new interface states

    Fs-ns double-pulse Laser Induced Breakdown Spectroscopy of copper-based-alloys: generation and elemental analysis of nanoparticles

    No full text
    Evolution of nanoparticles ejected during ultra-short (250 fs) laser ablation of certified copper alloys and relative calibration plots of a fs–ns double-pulse Laser Induced Breakdown Spectroscopy orthogonal configuration is presented. All work was performed in air at atmospheric pressure using certified copper-based-alloy samples irradiated by a fs laser beam and followed by a delayed perpendicular ns laser pulse. In order to evaluate possible compositional changes of the fs induced nanoparticles, it was necessary to consider, for all samples used, comparable features of the detected species. With this purpose the induced nanoparticles black-body-like emission evolution and their relative temperature decay have been studied. These data were exploited for defining the distance between the target surface and the successive ns laser beam to be used. The consequent calibration plots of minor constituents (i.e. Sn, Pb and Zn) of the certified copper-based-alloy samples have been reported by taking into account self-absorption effects. The resulting linear regression coefficients suggest that the method used, for monitoring and ruling the fs laser induced nanoparticles, could provide a valuable approach for establishing the occurrence of potential compositional changes of the detected species. All experimental data reveal that the fs laser induced nanoparticles can be used for providing a coherent composition of the starting target. In the meantime, the fs–ns double-pulse Laser Induced Breakdown Spectroscopy orthogonal configuration here used can be considered as an efficient technique for compositional determination of the nanoparticles ejected during ultra-short laser ablation processes

    Synthetic approach to and characterization of a fullerene-DTBT-fullerene triad

    No full text
    The synthesis of a new fullerene-dithienylbenzo[c]thiophene (DTBT)-fullerene triad is reported. The synthetic approach involves the synthesis of a DTBT unit, a Sonogashira reaction to introduce two acetylenic groups, and the coupling with fullerene. The product showed an absorption at λ = 485 nm and a fluorescence band at λ = 575 nm
    corecore