6 research outputs found
Evaluating the Sealing Effectiveness of a Caprock-Fault System for CO 2
An effective sealing system is crucial for CO2-EOR storage, and these sealing systems are typically composed of the caprocks and faults that surround a reservoir. Therefore, the sealing effectiveness of a caprock-fault system must be evaluated at various stages of CO2-EOR storage projects. This paper presents a new evaluation framework that considers specific site characteristics and a case study on the sealing effectiveness of the caprock-fault system in the Shengli Oilfield. The proposed method is a weighted ranking system where a set of 17 indicators has been developed for the assessment and ranking of the G89 block in terms of their sealing ability for CO2 sequestration. Additional indicators are involved in the method, such as the newly proposed parameter, frontier displacement work which reflects the influence of formation pressure, displacement pressure resistance, and caprock thickness. The new approach considers the sealing mechanisms of caprocks and faults as well as the configuration relationships between them. The method was used to evaluate the sealing effectiveness of the G89 block that has a considerable number of faults and good sealing ability of caprock in the Shengli Oilfield
Evaluating the Sealing Effectiveness of a Caprock-Fault System for CO2-EOR Storage: A Case Study of the Shengli Oilfield
An effective sealing system is crucial for CO2-EOR storage, and these sealing systems are typically composed of the caprocks and faults that surround a reservoir. Therefore, the sealing effectiveness of a caprock-fault system must be evaluated at various stages of CO2-EOR storage projects. This paper presents a new evaluation framework that considers specific site characteristics and a case study on the sealing effectiveness of the caprock-fault system in the Shengli Oilfield. The proposed method is a weighted ranking system where a set of 17 indicators has been developed for the assessment and ranking of the G89 block in terms of their sealing ability for CO2 sequestration. Additional indicators are involved in the method, such as the newly proposed parameter, frontier displacement work which reflects the influence of formation pressure, displacement pressure resistance, and caprock thickness. The new approach considers the sealing mechanisms of caprocks and faults as well as the configuration relationships between them. The method was used to evaluate the sealing effectiveness of the G89 block that has a considerable number of faults and good sealing ability of caprock in the Shengli Oilfield
Heat conduction and thermal convection on thermal front movement during natural gas hydrate thermal stimulation exploitation
Natural Gas Hydrate (NGH) has attracted increasing attention for its great potential as clean energy in the future. The main heat transfer mode that controls the thermal front movement in the process of NGH exploitation by heat injection was discussed through NGH thermal stimulation experiments, and whether it is reliable that most analytical models only consider the heat conduction but neglect the effect of thermal convection was determined by the comparison results between experiments and Selim’s thermal model. And the following findings were obtained. First, the movement rate of thermal front increases with the rise of hot water injection rate but changes little with the rise of the temperature of the injected hot water, which indicated that thermal convection is the key factor promoting the movement of thermal front. Second, the thermal front movement rates measured in the experiments are about 10 times that by the Selim’s thermal model, the reason for which is that the Selim’s thermal model only takes the heat conduction into account. And third, theoretical calculation shows that heat flux transferred by thermal convection is 15.56 times that by heat conduction. It is concluded that thermal convection is the main heat transfer mode that controls the thermal front movement in the process of NGH thermal stimulation, and its influence should never be neglected in those analytical models
Heat conduction and thermal convection on thermal front movement during natural gas hydrate thermal stimulation exploitation
Natural Gas Hydrate (NGH) has attracted increasing attention for its great potential as clean energy in the future. The main heat transfer mode that controls the thermal front movement in the process of NGH exploitation by heat injection was discussed through NGH thermal stimulation experiments, and whether it is reliable that most analytical models only consider the heat conduction but neglect the effect of thermal convection was determined by the comparison results between experiments and Selim’s thermal model. And the following findings were obtained. First, the movement rate of thermal front increases with the rise of hot water injection rate but changes little with the rise of the temperature of the injected hot water, which indicated that thermal convection is the key factor promoting the movement of thermal front. Second, the thermal front movement rates measured in the experiments are about 10 times that by the Selim’s thermal model, the reason for which is that the Selim’s thermal model only takes the heat conduction into account. And third, theoretical calculation shows that heat flux transferred by thermal convection is 15.56 times that by heat conduction. It is concluded that thermal convection is the main heat transfer mode that controls the thermal front movement in the process of NGH thermal stimulation, and its influence should never be neglected in those analytical models
Quantitative Measures for Characterizing the Sealing Ability of Caprock with Pore Networks in CO2 Geological Storage
AbstractExistence of high quality caprocks is one of the necessary conditions to realize effective geological sequestration of CO2. Existing measures for the evaluation of caprock sealing ability cannot represent the sealing effect of formation thickness. New quantitative measures for characterizing the sealing ability of caprock with pore networks were developed for CO2 geological storage. The new measures, actually as a synthesis of numerous conventional and commonly used parameters, are related to the maximum pressure the caprock can sustain to prevent the CO2 leak to the topmost position of the caprock. The measures are capable of reflecting the role that formation thicknesses play in addition to the traditional capillary sealing mechanism and the formation pressure sealing mechanism. It is also anticipated the new measures are applicable to evaluations of natural gas caprocks. Case study shows that the new measure usually predicts higher sealing ability than that by the traditional measure mainly due to the consideration of formation thickness