21 research outputs found

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Stress Testing of Steel Suspender of Arch Bridge Model Based on Induced Magnetic Flux Method

    No full text
    To establish an online nondestructive stress testing method for arch bridge suspender based on the principle of magnetic coupling, the magnetic mechanical property of Q345qD steel is explored taking an arch bridge model structure with Q345qD steel suspender as the research object. Under the action of magnetic field excited by a coil, the test of the coupling relationship between stress and excitation flux is carried out. The theoretical model of stress-magnetic flux is simplified to better meet the requirements of engineering applications. The excitation device, magnetic flux measurement device, stress-magnetic flux data analysis program, and so on are developed, and the magnetic coupling stress detection system is integrated. The test model structure of a steel arch bridge with suspenders of Q345qD alloy steel is designed and made; under the different load conditions, the stresses of the suspenders are tested and studied. The relationships between induced magnetic flux and technical magnetized voltage, test load of model structure, and different stress conditions of the suspenders are analyzed; with the induction magnetic flux as the parameter, the stress-magnetic flux coupling model is established. The test results based on the stress-magnetic flux coupling model are compared with those of the traditional stress-strain test in a linear elastic range; it shows that the two testing methods are in good agreement with each other, and the maximum error is less than 5%. Meanwhile, with the increase in the load on the suspender, the tension stress increases and the induced magnetic flux decreases, showing a good linear relationship. The conclusions drawn from the research can provide important reference for health monitoring of suspenders of arch bridges

    Influence of load partial factors adjustment on reliability design of RC frame structures in China

    No full text
    Abstract The partial factor method has been widely used in building design and the partial factors to ensure the safety of structures are specified in the adopted codes. The load partial factors in the design expressions have been increased in the lasted code in China, which leads to theoretically increment in reliability and a growth in the consumption of construction materials. However, the influence of load partial factors adjustment on design of building structures arises different points among scholars. Some believe that it has a great impact on the design, some think the influence is small. This makes designers have doubts in the safety of structures and investors are also confused about the cost. In order to illustrate the influence of load partial factor adjustment on safety level and material consumption of RC (Reinforced Concrete) frame structures, reliability analysis and material consumption analysis are performed using First Order Reliability Method (FORM). The approach is carried out according to the load partial factors in Chinese codes of (GB50153-2008) and (GB50068-2018), respectively. Then, the influence of load partial factors adjustment is demonstrated with a case design of RC frame structures with different load partial factors in codes. The results show that the partial factor has a noticeable influence on the reliability index. The adjustment of load partial factors in design leads to an increase of the reliability index, which is about 8–16%. The increase of material consumption used in RC structures is about 0.75–6.29%. And the case indicated that the adjustment of load partial factors mainly result in the increase of reinforcement consumption, while have little effect on the concrete consumption. This study provides an analytical and conclusive insight into the influence of load partial factor adjustment on safety level and material consumption, which is can be applied to a wide range of structures

    Study of the Dynamic Reaction Mechanism of the Cable-Stayed Tube Bridge under Earthquake Action

    No full text
    In order to explore the failure mode of the cable-stayed pipe bridge under earthquake action, taking the structural system of an oil and gas pipeline–cable-stayed pipe bridge as the research object, the full-scale finite element calculation model of the cable-stayed pipe bridge–oil and gas pipeline structural system as well as the finite element calculation model considering the additional mass of the oil and gas medium and the fluid–structure interaction effect were established by using ANSYS Workbench finite element software. The stress and displacement of the cable under the earthquake action were analyzed in the time history, as were the response characteristics of the cable when subjected to both methods. The calculation results show that the overall failure of the pipeline is basically the same under the two methods. Compared with the additional mass method, the solution for the fluid–structure coupling method can be derived through a comprehensive analysis of the flow field and structure, respectively, avoiding the sudden change caused by model simplification or calculation error so that the analysis results can better simulate the actual situation. In summary, the fluid–structure interaction method enables a more precise prediction of the dynamic response of the structure, and the findings of this research can provide a theoretical foundation and technical guidance for optimizing the seismic performance of cable-stayed pipe bridges

    Coupling Ratio-Based Design and Seismic Performance of Modular Prefabricated Hybrid Coupled Walls

    No full text
    Based on the advantages of modular prefabricated multistory steel structure, a full-bolt-connected modular steel coupling beam-hybrid coupled wall system is presented. Further, a method of estimating the coupling ratio (CR) is proposed according to the continuous link method. A CR-based seismic design procedure is determined such that the structure utilizes the lateral stiffness of the shear wall, which is necessary to avoid structural damage under frequently occurring earthquakes. However, it also exhibits excellent ductility of the coupling beams, which is necessary for dissipating energy under infrequent earthquakes. Subsequently, nonlinear hysteretic analyses are conducted from finite element analysis software ABAQUS, and a parametric study based on the finite element technique is performed to identify the optimal value of the coupling ratio. Results indicate that the seismic performance of modular prefabricated HCWs was excellent, and the basic requirements for ductile behavior and lateral stiffness were satisfied for CR values from 50% to 60%. The obtained results confirm the accuracy of the CR-based seismic design method proposed in this study and are supported by the selection of the design parameter at the initial design stage

    Magnetic Stress Sensing System for Nondestructive Stress Testing of Structural Steel and Steel Truss Components Based on Existing Magnetism

    No full text
    To detect the stress of steel structures and members using the existing magnetism, a magnetic stress sensing system integrating a magnetic flux induction coil, a magnetic flux measurement device, a loaded device, and data acquisition software was developed. The magnetic coupling test research was carried out for different grades of structural building and bridge steel specimens to establish the magnetic stress flux mathematical model, and the fitting equation of the magnetic flux changes with the positions of different sections of specimens was analyzed. Furthermore, a practical formula for stress detection was obtained through the experiments. Meanwhile, on these bases, the typical steel truss structure model of a Bailey beam was designed and manufactured under different working conditions, nondestructive online stress testing was carried out, and the stress of the model structure and its members was measured by strain and magnetic flux tests to obtain the curves of the test results for the stress–strain and magnetic stress flux, respectively. The results of these two methods are in good agreement with each other. The stress of the steel truss model structure was analyzed and calculated using the finite element method. The results agreed well with the experimental results from the magnetic stress sensing system—the maximum error was about 5%, which meets the requirements of engineering applications
    corecore