18 research outputs found

    Wearable Plasma Pads for Biomedical Applications

    No full text
    A plasma pad that can be attached to human skin was developed for aesthetic and dermatological treatment. A polyimide film was used for the dielectric layer of the flexible pad, and high-voltage and ground electrodes were placed on the film surface. Medical gauze covered the ground electrodes and was placed facing the skin to act as a spacer; thus, the plasma floated between the gauze and ground electrodes. In vitro and in vivo biocompatibility tests of the pad showed no cytotoxicity to normal cells and no irritation of mouse skin. Antibacterial activity was shown against Staphylococcus aureus and clinical isolates of methicillin-resistant S. aureus. Furthermore, skin wound healing with increased hair growth resulting from increased exogenous nitric oxide and capillary tube formation induced by the plasma pad was also confirmed in vivo. The present study suggests that this flexible and wearable plasma pad can be used for biomedical applications such as treatment of wounds and bacterial infections

    Properties of high-pressure discharge plasmas

    No full text

    Enhanced Photodynamic Anticancer Activities of Multifunctional Magnetic Nanoparticles (Fe3O4) Conjugated with Chlorin e6 and Folic Acid in Prostate and Breast Cancer Cells

    No full text
    Photodynamic therapy (PDT) is a promising alternative to conventional cancer treatment methods. Nonetheless, improvement of in vivo light penetration and cancer cell-targeting efficiency remain major challenges in clinical photodynamic therapy. This study aimed to develop multifunctional magnetic nanoparticles conjugated with a photosensitizer (PS) and cancer-targeting molecules via a simple surface modification process for PDT. To selectively target cancer cells and PDT functionality, core magnetic (Fe3O4) nanoparticles were covalently bound with chlorin e6 (Ce6) as a PS and folic acid (FA). When irradiated with a 660-nm long-wavelength light source, the Fe3O4-Ce6-FA nanoparticles with good biocompatibility exerted marked anticancer effects via apoptosis, as confirmed by analyzing the translocation of the plasma membrane, nuclear fragmentation, activities of caspase-3/7 in prostate (PC-3) and breast (MCF-7) cancer cells. Ce6, used herein as a PS, is thus more useful for PDT because of its ability to produce a high singlet oxygen quantum yield, which is owed to deep penetration by virtue of its long-wavelength absorption band; however, further in vivo studies are required to verify its biological effects for clinical applications

    Discharge Characteristics and Plasma Erosion of Various Dielectric Materials in the Dielectric Barrier Discharges

    No full text
    The objective of this study is the investigation of dielectric barrier discharges (DBDs) with the solid plates and the flexible polymer films. A high capacitance with a high dielectric constant and a small thickness is responsible for the discharge of a high plasma current with a low operation voltage; here, the thin flexible polyimide film ensured a high capacitance, and is comparable to the thick solid-plate alumina. In the long-duration test of the dielectric-surface plasma erosion, the solid plates show a high resistance against the plasma erosions, while the polymer films are vulnerable to the etching by the plasma-species chemical reaction. The polymer-film surface, however, was reinforced remarkably against the plasma erosion by the silicone-paste coating

    Fabrication and Characterization of Medical Mesh-Nebulizer for Aerosol Drug Delivery

    No full text
    In the field of drug delivery, a nebulizer is a device used to convert liquid drugs into tiny airborne droplets, such as aerosol or a mist form. These fine droplets are delivered to a patient’s lungs and airways and then spread throughout the body via blood vessels. Therefore, nebulization therapy is a highly-effective method compared with existing drug delivery methods. To enhance the curative influence of a drug, this study suggests the use of a new micro-porous mesh nebulizer consisting of a controllable palladium–nickel (Pd–Ni) membrane filter, piezoelectric element, and a cavity in the micro-pump. In this research, we optimize a biocompatible Pd–Ni membrane filter, such that it generated the smallest aerosol particles of various drugs. The pore size of the filter outlet is 4.2 μm ± 0.15 μm and the thickness of the Pd-Ni membrane filter is approximately 41.5 μm. In addition, the Pd–Ni membrane filter has good biocompatibility with normal cells. The result of a spray test with deionized (DI) water indicated that the size of a standard liquid droplet is 4.53 μm. The device has an electrical requirement, with a low power consumption of 2.5 W, and an optimal operation frequency of 98.5 kHz

    Optimized Photodynamic Therapy with Multifunctional Cobalt Magnetic Nanoparticles

    No full text
    Photodynamic therapy (PDT) has been adopted as a minimally invasive approach for the localized treatment of superficial tumors, representing an improvement in the care of cancer patients. To improve the efficacy of PDT, it is important to first select an optimized nanocarrier and determine the influence of light parameters on the photosensitizing agent. In particular, much more knowledge concerning the importance of fluence and exposure time is required to gain a better understanding of the photodynamic efficacy. In the present study, we synthesized novel folic acid-(FA) and hematoporphyrin (HP)-conjugated multifunctional magnetic nanoparticles (CoFe2O4-HPs-FAs), which were characterized as effective anticancer reagents for PDT, and evaluated the influence of incubation time and light exposure time on the photodynamic anticancer activities of CoFe2O4-HPs-FAs in prostate cancer cells (PC-3 cells). The results indicated that the same fluence at different exposure times resulted in changes in the anticancer activities on PC-3 cells as well as in reactive oxygen species formation. In addition, an increase of the fluence showed an improvement for cell photo-inactivation. Therefore, we have established optimized conditions for new multifunctional magnetic nanoparticles with direct application for improving PDT for cancer patients
    corecore