83 research outputs found

    Modelling of water transport through mixed-ion conducting dense ceramics

    Get PDF
    WOS: 000434365200020This study develops and demonstrates a model that characterizes defect transports, responsible for water transport within dense ceramics, and calculates the diffusion coefficients for those defects. The multi-species mass transfer processes within yttrium doped barium cerates are modelled by applying the Nernst-Planck equation to the system. The Nernst-Planck equation with suitable boundary conditions is adopted to compute defect diffusion coefficients in COMSOL Multiphysics. All related equations, based on charge and defect conservation, are solved numerically and validated experimentally. The model also predicts the concentration distribution of the defects and potential profiles throughout the membranes. The results provided convenient insights about the water transport and charge distribution as a function of membrane thickness.Ministry of National Education TurkeyMinistry of National Education - TurkeyThe authors would like to acknowledge the Ministry of National Education Turkey for funding. Also, we would like to thank Prof. Ian Metcalfe for the useful discussions and School of Chemical Engineering, Newcastle University, UK for the university"s resources

    The effects of sulphur poisoning on the microstructure, composition and oxygen transport properties of perovskite membranes coated with nanoscale alumina layers

    Get PDF
    Perovskite oxides displaying mixed ionic and electronic conductivity have attracted a lot of interest for application in oxygen separation membranes. Such membranes could be used for a range of processes, including the conversion of natural gas to hydrogen or syngas. A major limitation of these materials is their tendency to segregate into simpler oxides under operating conditions, reacting with sulphur-based species often found in natural gas and leading to irreversible membrane degradation over time. Here we aim to delay or prevent this process by coating La0.6Sr0.4Co0.2Fe0.8O3-δ membranes with Alumina (Al2O3) layers of 1–100 nm thickness by using atomic layer deposition. We show that coatings of about 30 nm have negligible negative effect on O2 transport flux across the membrane and display good flux recovery when H2S is removed from the stream. Coatings thinner than this critical value provide little protection against irreversible poisoning while thicker coatings dramatically decrease overall O2 permeation fluxes. We also show that the irreversible sulphur poisoning under O2 permeation conditions is linked to microstructural and composition changes at the membrane surface caused predominantly by the formation of SrSO4 particles at the perovskite grain boundaries

    Application of the strip clear-cutting system in a running bamboo (Phyllostachys glauca McClure) forest: feasibility and sustainability assessments

    Get PDF
    IntroductionAs a renewable forest resource, bamboo plays a role in sustainable forest development. However, traditional cutting systems, selection cutting (SeC) and clear-cutting (ClC), result in an unsustainable production of bamboo forests due to labor-consuming or bamboo degradation. Recently, a strip clear-cutting (StC) was theoretically proposed to promote the sustainability of bamboo production, while little is known about its application consequence.MethodsBased on a 6-year experiment, we applied the strip clear-cutting system in a typical running bamboo (Phyllostachys glauca McClure) forest to assess its feasibility and sustainability. Using SeC and ClC as controls, we set three treatments with different strip widths (5 m, 10 m, and 20 m) for strip clear-cutting, simplified as StC-5, StC-10, and StC-20, respectively. Then, we investigated leaf physiological traits, bamboo size and productivity, population features, and economic benefits for all treatments.ResultsThe stands managed by StC had high eco-physiological activities, such as net photosynthetic rate (Pn), photosynthetic nitrogen use efficiency (PNUE), and photosynthetic phosphorus use efficiency (PPUE), and thus grew well, achieved a large diameter at breast height (DBH), and were tall. The stand biomass of StC (8.78 t hm-2 year-1) was 1.19-fold and 1.49-fold greater than that of SeC and ClC, respectively, and StC-10 and StC-20 were significantly higher than SeC or ClC (p< 0.05). The income and profit increased with the increase in stand density and biomass, and StC-20 and StC-10 were significantly higher than SeC or ClC (p< 0.05). Using principal components analysis and subordinate function analysis, we constructed a composite index to indicate the sustainability of bamboo forests. For the sustainability assessment, StC-10 had the highest productive sustainability (0.59 ± 0.06) and the second highest economic sustainability (0.59 ± 0.11) in all cutting treatments. StC-10 had the maximum overall sustainability, with a value of 0.53 ± 0.02, which was significantly higher than that of ClC (p< 0.05).ConclusionThe results verified that StC for Phyllostachys glauca forests is feasible and sustainable as its sustainability index outweighs those of traditional cutting systems (SeC and ClC), and 10 m is the optimum distance for the strip width of StC. Our findings provide a new cutting system for managing other running bamboo forests sustainably

    The association between Chinese visceral adiposity index and cardiometabolic multimorbidity among Chinese middle-aged and older adults: a national cohort study

    Get PDF
    ObjectiveThis study aimed to explore the association between the Chinese visceral adiposity index (CVAI) and cardiometabolic multimorbidity in middle-aged and older Chinese adults.MethodsThe data used in this study were obtained from a national cohort, the China Health and Retirement Longitudinal Study (CHARLS, 2011-2018 wave). The CVAI was measured using previously validated biomarker estimation formulas, which included sex, age, body mass index, waist circumference, triglycerides, and high-density lipoprotein cholesterol. The presence of two or more of these cardiometabolic diseases (diabetes, heart disease, and stroke) is considered as cardiometabolic multimorbidity. We used Cox proportional hazard regression models to examine the association between CVAI and cardiometabolic multimorbidity, adjusting for a set of covariates. Hazard ratios (HRs) and 95% confidence intervals (CIs) were used to show the strength of the associations. We also conducted a subgroup analysis between age and sex, as well as two sensitivity analyses. Receiver operator characteristic curves (ROC) were used to test the predictive capabilities and cutoff value of the CVAI for cardiometabolic multimorbidity.ResultsA total of 9028 participants were included in the final analysis, with a mean age of 59.3 years (standard deviation: 9.3) and women accounting for 53.7% of the sample population. In the fully-adjusted model, compared with participants in the Q1 of CVAI, the Q3 (HR = 2.203, 95% CI = 1.039 – 3.774) and Q4 of CVAI (HR = 3.547, 95% CI = 2.100 – 5.992) were associated with an increased risk of cardiometabolic multimorbidity. There was no evidence of an interaction between the CVAI quartiles and sex or age in association with cardiometabolic multimorbidity (P >0.05). The results of both sensitivity analyses suggested that the association between CVAI and cardiometabolic multimorbidity was robust. In addition, the area under ROC and ideal cutoff value for CVAI prediction of cardiometabolic multimorbidity were 0.685 (95% CI = 0.649-0.722) and 121.388.ConclusionThe CVAI is a valid biomarker with good predictive capability for cardiometabolic multimorbidity and can be used by primary healthcare organizations in the future for early warning, prevention, and intervention with regard to cardiometabolic multimorbidity
    • …
    corecore