81 research outputs found
The Design of Fall Detection and Positioning Alarm System Base on WCDMA
Abstract- In this paper, a novel fall detection and automatic alarm system has been designed and presented, which consists of sensor module, control module and communication module. The sensor modules composed of 3-axis accelerometers are placed on object’s pocket to monitor the object’s acceleration. System is driven by an inexpensive and low consumption microcontroller. When object is fall, the system will detect it by the abnormal acceleration and make accurate positioning through GPS immediately. The alarm as well as location information is sent via 3G network to the mobile phone number that has been set. The system has the advantages of portable, low-power and accuracy
Preparation and Property Characterization of Sm<sub>2</sub>EuSbO<sub>7</sub>/ZnBiSbO<sub>5</sub> Heterojunction Photocatalyst for Photodegradation of Parathion Methyl under Visible Light Irradiation
An unprecedented photocatalyst, Sm2EuSbO7, was successfully fabricated in this paper, through a high-temperature solid-state calcination method, which represented its first ever synthesis. Additionally, using the solvothermal method, the Sm2EuSbO7/ZnBiSbO5 heterojunction photocatalyst (SZHP) was fabricated, marking its debut in this study. XRD analysis confirmed that both Sm2EuSbO7 and ZnBiSbO5 exhibited pyrochlore-type crystal structures with a cubic lattice, belonging to the Fd3m space group. The crystal cell parameter was determined to be 10.5682 Å or 10.2943 Å for Sm2EuSbO7 or ZnBiSbO5, respectively. The band gap width measured for Sm2EuSbO7 or ZnBiSbO5 was 2.73 eV or 2.61 eV, respectively. Under visible light irradiation for 150 min (VLTI-150 min), SZHP exhibited remarkable photocatalytic activity, achieving 100% removal of parathion methyl (PM) concentration and 99.45% removal of total organic carbon (TOC) concentration. The kinetic constant (k) for PM degradation and visible light illumination treatment was determined to be 0.0206 min−1, with a similar constant k of 0.0202 min−1 observed for TOC degradation. Remarkably, SZHP exhibited superior PM removal rates compared with Sm2EuSbO7, ZnBiSbO5, or N-doped TiO2 photocatalyst, accompanied by removal rates 1.09 times, 1.20 times, or 2.38 times higher, respectively. Furthermore, the study investigated the oxidizing capability of free radicals through the use of trapping agents. The results showed that hydroxyl radicals had the strongest oxidative capability, followed by superoxide anions and holes. These findings provide a solid scientific foundation for future research and development of efficient heterojunction compound catalysts
Direct Regenerating Cathode Materials from Spent Lithium‐Ion Batteries
Abstract Recycling cathode materials from spent lithium‐ion batteries (LIBs) is critical to a sustainable society as it will relief valuable but scarce recourse crises and reduce environment burdens simultaneously. Different from conventional hydrometallurgical and pyrometallurgical recycling methods, direct regeneration relies on non‐destructive cathode‐to‐cathode mode, and therefore, more time and energy‐saving along with an increased economic return and reduced CO2 footprint. This review retrospects the history of direct regeneration and discusses state‐of‐the‐art development. The reported methods, including high‐temperature solid‐state, hydrothermal/ionothermal, molten salt thermochemistry, and electrochemical method, are comparatively introduced, targeting at illustrating their underlying regeneration mechanism and applicability. Further, representative repairing and upcycling studies on wide‐applied cathodes, including LiCoO2 (LCO), ternary oxides, LiFePO4 (LFP), and LiMn2O4 (LMO), are presented, with an emphasis on milestone cases. Despite these achievements, there remain several critical issues that shall be addressed before the commercialization of the mentioned direct regeneration methods
Application of Calcium Sulfate Whiskers to Cement-Based Materials: A Review
In recent years, significant attention has been paid to the use of calcium sulfate whiskers (CSWs) to enhance the performance of cement-based materials (CBM). This technology has attracted widespread interest from researchers because it enhances the performance and sustainability of CBM by modifying the crystal structure of calcium sulfate. This article summarizes the fundamental properties and preparation methods of calcium sulfate whisker materials as well as their applications in cement, potential advantages and disadvantages, and practical applications and prospects. The introduction of CSWs has been demonstrated to enhance the strength, durability, and crack resistance of CBM while also addressing concerns related to permeability and shrinkage. The application of this technology is expected to improve the quality and lifespan of buildings, reduce maintenance costs, and positively impact the environment. The use of CSWs in CBM represents a promising material innovation that offers lasting and sustainable advancement in the construction industry
Synthesis, Performance Measurement of Bi<sub>2</sub>SmSbO<sub>7</sub>/ZnBiYO<sub>4</sub> Heterojunction Photocatalyst and Photocatalytic Degradation of Direct Orange within Dye Wastewater under Visible Light Irradiation
Originally, the new catalyst Bi2SmSbO7 was synthesized by the hydrothermal synthesis method or by the solid-phase sintering method at a lofty temperature. A solvothermal method was utilized to prepare a Bi2SmSbO7/ZnBiYO4 heterojunction photocatalyst (BZHP). The crystal structure of Bi2SmSbO7 belonged to the pyrochlore structure and face-centered cubic crystal system by the space group of Fd3m. The cell parameter a was equivalent to 10.835(1) Å (Bi2SmSbO7). With Bi2SmSbO7/ZnBiYO4 heterojunction (BZH) as the photocatalyst, the removal rate (RR) of direct orange (DO) and the total organic carbon were 99.10% and 96.21% after visible light irradiation of 160 min (VLI-160M). The kinetic constant k toward DO concentration and visible light irradiation time (VLI) with BZH as photocatalyst reached 2.167 min−1. The kinetic constant k, which was concerned with total organic carbon, reached 0.047 min−1. The kinetic curve that came from DO degradation with BZH as a catalyst under VLI conformed to the second-order reaction kinetics. After VLI-160M, the photocatalytic degradation (PD) removal percentage of DO with BZH as the photocatalyst was 1.200 times, 1.268 times or 3.019 times that with Bi2SmSbO7 as the photocatalyst, ZnBiYO4 as the photocatalyst or with nitrogen-doped titanium dioxide as the photocatalyst. The photocatalytic activity (PA) was as following: BZH > Bi2SmSbO7 > ZnBiYO4 > nitrogen-doped titanium dioxide. After VLI-160M for three cycles of experiments with BZH as the photocatalyst, the RR of DO reached 98.03%, 96.73% and 95.43%, respectively, which meant that BZHP possessed high stability. By using the experiment of adding a trapping agent, the oxidative purifying capability for degradation of direct orange, which was in gradual depressed order, was as following: hydroxyl radical > superoxide anion > holes. Finally, the possible degradation pathway and degradation mechanism of DO were discussed systematically. A new high active heterojunction catalyst BZHP, which could efficiently remove toxic organic pollutants such as DO from dye wastewater after VLI, was obtained. Our research was meant to improve the photocatalytic property of the single photocatalyst
Synthesis and Property Examination of Er2FeSbO7/BiTiSbO6 Heterojunction Composite Catalyst and Light-Catalyzed Retrogradation of Enrofloxacin in Pharmaceutical Waste Water under Visible Light Irradiation
A new photocatalyst, Er2FeSbO7, was prepared by solid phase sintering using the high-temperature synthesis method for the first time in this paper. Er2FeSbO7/BiTiSbO6 heterojunction (EBH) catalyst was prepared by the solvent thermal method for the first time. Er2FeSbO7 compound crystallized in the pyrochlore-type architecture and cubelike crystal system; the interspace group of Er2FeSbO7 was Fd3m and the crystal cellular parameter a of Er2FeSbO7 was 10.179902 Å. The band gap (BDG) width of Er2FeSbO7 was 1.88 eV. After visible light irradiation of 150 minutes (VLGI-150min) with EBH as a photocatalyst, the removal rate (RR) of enrofloxacin (ENR) concentration was 99.16%, and the total organic carbon (TOC) concentration RR was 94.96%. The power mechanics invariable k toward ENR consistency and visible light irradiation (VLGI) time with EBH as a photocatalyzer attained 0.02296 min−1. The power mechanics invariable k which was involved with TOC attained 0.01535 min−1. The experimental results showed that the photocatalytic degradation (PCD) of ENR within pharmaceutical waste water with EBH as a photocatalyzer under VLGI was in keeping with the single-order reactivity power mechanics. The RR of ENR with EBH as a photocatalyzer was 1.151 times, 1.269 times or 2.524 times that with Er2FeSbO7 as a photocatalyst, BiTiSbO6 as a photocatalyst, or N-doping TiO2 (N-TO) as a photocatalyst after VLGI-150min. The photocatalytic activity, which ranged from high to low among above four photocatalysts, was as follows: EBHP > Er2FeSbO7 > BiTiSbO6 > N-TO. After VLGI-150min toward three periods of the project with EBH as a photocatalyst, the RR of ENR attained 98.00%, 96.76% and 95.60%. The results showed that the stability of EBH was very high. With appending trapping agent, it could be proved that the oxidative capability for degrading ENR, which ranged from strong to weak among three oxidic radicals, was as follows: superoxide anion > hydroxyl radicals (HRS) > holes. This work provides a scientific basis for the research and oriented leader development of efficient heterojunction catalysts
Ultra-broadband achromatic metalens with high performance for the entire visible and near-infrared spectrum
Metalenses provide unprecedented opportunities to overcome the limitations of conventional refractive lenses, which have been extensively studied to achieve achromatic focusing and imaging in various wavebands. However, it is a challenging task to create a metalens that can achieve achromatic focusing with high efficiency for a broad bandwidth covering the entire visible and near-infrared spectrum. Here, we present a design to overcome the difficulty by employing two types of silicon nitride pillars with different cross sections as optical phase shifters. Numerical results demonstrate diffraction-limited achromatic focusing for the ultra-broad bandwidth from 400 to 1120 nm. All the focal spots at different wavelengths are almost in the same position. The maximum focal shift from the metalens focal length over the ultra-broad waveband is less than 3 %. And the average transmittance and focusing efficiency are 90.2 % and 77.7 %, respectively. These results indicate significant improvement over the previously reported achromatic metalenses in terms of focal-shift suppression and wideband operation with high efficiency. The research provides a means to develop a high-quality achromatic metalens for the entire visible and near-infrared spectrum
A New Sesquilignan Glucoside from Uraria sinensis
A new sesquilignan glucoside, urariasinoside A (1), together with eight known compounds, including two lignans, a sesquilignan, a dilignan, and four flavonoid derivatives were isolated from the aerial parts of Uraria sinensis. Their structures were determined on the basis of extensive spectroscopic analyses and comparison with literature data. Compound 1 was evaluated for in vitro cytotoxicity activity against HL-60, SMMC-7721, A549, MCF-7, SW480, and BEAS-2B cell lines
- …