3 research outputs found

    A Tough Metal‐Coordinated Elastomer: A Fatigue‐Resistant, Notch‐Insensitive Material with an Excellent Self‐Healing Capacity

    Get PDF
    Self-healing materials can prolong device life, but their relatively weak mechanical strength limits their applications. Introducing tunable metal-ligand interactions into self-healing systems can improve their mechanical strength. However, applying this concept to solid elastomers is a challenge. To address this need, polyurethane-containing metal complexes were fabricated by introduction of a pyridine-containing ligand into polyurethane, and subsequent coordination with Fe2+. The strong reversible coordination bond provides mechanical strength and self-healing ability. By optimizing the monomer ratio and Fe2+ content, the resulting complex possesses a very high tensile strength of 4.6MPa at strain of around 498% and a high Young's modulus (3.2MPa). Importantly, the metal complex exhibits an extremely high self-healing efficiency of approximately 96% of tensile strength at room temperature and around 30% at 5 degrees C. The complex is notch-insensitive and the fracture energy is 76186J/m(2), which is among the highest reported values for self-healing systems

    Recent Achievements of Self-Healing Graphene/Polymer Composites

    No full text
    Self-healing materials have attracted much attention because that they possess the ability to increase the lifetime of materials and reduce the total cost of systems during the process of long-term use; incorporation of functional material enlarges their applications. Graphene, as a promising additive, has received great attention due to its large specific surface area, ultrahigh conductivity, strong antioxidant characteristics, thermal stability, high thermal conductivity, and good mechanical properties. In this brief review, graphene-containing polymer composites with self-healing properties are summarized including their preparations, self-healing conditions, properties, and applications. In addition, future perspectives of graphene/polymer composites are briefly discussed

    The Role of the Carnitine/Organic Cation Transporter Novel 2 in the Clinical Outcome of Patients With Locally Advanced Esophageal Carcinoma Treated With Oxaliplatin

    Full text link
    Esophageal cancer is the ninth most common malignancy worldwide, ranking sixth in mortality. Platinum-based chemotherapy is commonly used for treating locally advanced esophageal cancer, yet it is ineffective in a large portion of patients. There is a need for reliable molecular markers with direct clinical application for a prospective selection of patients who can benefit from chemotherapy and patients in whom toxicity is likely to outweigh the benefit. The cytotoxic activity of platinum derivatives largely depends on the uptake and accumulation into cells, primarily by organic cation transporters (OCTs). The aim of the study was to investigate the impact of OCT expression on the clinical outcome of patients with esophageal cancer treated with oxaliplatin. Twenty patients with esophageal squamous cell carcinoma (SCC) were prospectively enrolled and surgical specimens used for screening OCT expression level by western blotting and/or immunostaining, and for culture of cancer cells. Sixty-seven patients with SCC who received oxaliplatin and for whom follow-up was available were retrospectively assessed for organic cation/carnitine transporter 2 (OCTN2) expression by real time RT-PCR and immunostaining. OCTN2 staining was also performed in 22 esophageal adenocarcinomas. OCTN2 function in patient-derived cancer cells was evaluated by assessing L-carnitine uptake and sensitivity to oxaliplatin. The impact of OCTN2 on oxaliplatin activity was also assessed in HEK293 cells overexpressing OCTN2. OCTN2 expression was higher in tumor than in normal tissues. In patient-derived cancer cells and HEK293 cells, the expression of OCTN2 sensitized to oxaliplatin. Patients treated with oxaliplatin who had high OCTN2 level in the tumor tissue had a reduced risk of recurrence and a longer survival time than those with low expression of OCTN2 in tumor tissue. In conclusion, OCTN2 is expressed in esophageal cancer and it is likely to contribute to the accumulation and cytotoxic activity of oxaliplatin in patients with esophageal carcinoma treated with oxaliplatin
    corecore