785 research outputs found

    Strongly coupled peridynamic and lattice Boltzmann models using immersed boundary method for flow-induced structural deformation and fracture

    Get PDF
    To simulate the dynamics of structural deformation and fracture caused by fluid-structure interactions accurately and efficiently, a strong coupling between the peridynamic model and the lattice Boltzmann method using the immersed boundary method is developed here. In this novel method, the peridynamic model predicts structural deformation and fracture, the cascaded lattice Boltzmann method serves as the flow solver, and the immersed boundary method is to enforce a no-slip boundary condition on the fluid-solid interface. The strong coupling is achieved by adding velocity corrections for the fluid and solid phases simultaneously at each time step, which are calculated by solving a linear system of equations derived from an implicit velocity correction immersed boundary scheme. Therefore, this new scheme based on the immersed boundary method eliminates the need to iteratively solve the dynamics of the fluid and solid phases at each time step. The proposed method is rigorously validated considering the plate with a pre-existing crack under velocity boundary conditions, the sedimentation of an elastic disk, the cross-flow over a flexible beam, and the flow-induced deformation of an elastic beam attached to a rigid cylinder. More importantly, the structural deformation, crack formation, and fracture due to interaction with the fluid flow are captured innovatively

    A multi-physics peridynamics-DEM-IB-CLBM framework for the prediction of erosive impact of solid particles in viscous fluids

    Get PDF
    In this paper, a new fully-resolved framework capable of capturing the fundamental physics of particle–fluid interactions, the collision of particles with solid surfaces, and the resulting damage is proposed. A coupled DEM-IB-CLBM, consisting of a discrete element method (DEM), an immersed boundary (IB) method, and a cascaded lattice Boltzmann method (CLBM), is used to fully resolve the interaction of the particles with the surrounding viscous fluid. The peridynamics theory is then implemented and used to predict the impact damage to the target material. This framework is validated by comparing the trajectory of a particle–wall collision event in a viscous fluid with the previous results in the literature. Furthermore, the variation of the restitution coefficient with the impact velocity is in a good agreement with the available experimental results. The influence of multiple impacts and the resulting surface damage on the fluid dynamics of the system is investigated. It is demonstrated that the method correctly predicts the expected effects of multiple collisions and impact angle variations on the surface damage

    Fuzzy PID control of a two-link flexible manipulator

    Get PDF
    For a flexible manipulator system, the unwanted vibrations deteriorate usually the performance of the system due to the coupling of large overall motion and elastic vibration. This paper focuses on the active vibration control of a two-link flexible manipulator with piezoelectric materials. The multi flexible body dynamics (MFBD) model of the two-link flexible manipulator attached with piezoelectric sensors and actuators is established firstly. Based on the absolute nodal coordinate formulation (ANCF), the motion equations of the manipulator system are derived and motion process and dynamic responses of the system are simulated. According to the time varying feature of system, a fuzzy PID controller is developed to depress the vibration. This controller can tune control gains online accommodating to the variation of the system. Control results obtained by the fuzzy PID control and the conventional PID control indicate that the fuzzy PID controller can effectively suppress the elastic vibration of the manipulator system and performs better than the conventional PID controller

    Dynamic Behaviors and Energy Transition Mechanism of Droplets Impacting on Hydrophobic Surfaces

    Get PDF
    The wettability of hydrophobic surfaces and the dynamic behaviors of droplets impacting on hydrophobic surfaces are simulated using a lattice Boltzmann method, and the condition for the rebound phenomenon of droplets impacting on solid surfaces is analyzed. The results show that there is a linear relationship between the intrinsic contact angle and the interaction strength of fluid-wall particles. For hydrophobic surfaces with the same intrinsic contact angle, the micromorphology can increase the surface hydrophobicity, especially the hierarchical micromorphology. The dynamic behaviors of droplets impacting on solid surfaces are affected by the wettability. The surface hydrophobicity is stronger, and the rebound phenomenon occurs easier. If the droplet’s kinetic energy is greater than the sum of the surface energy and the minimum conversion gravitational potential energy when the spreading and shrinking finish, the rebound phenomenon will occur. As the hydrophobic surface’s viscous dissipation is much smaller than the hydrophilic surface’s, the droplet still has high kinetic energy after the spreading and shrinking, which is advantageous to rebound for droplets

    Enhancement of baryon-to-meson ratios around jets as a signature of medium response

    Full text link
    We present a unique signal of jet-induced medium excitations: the enhancement of baryon-to-meson ratios around the quenched jets. To illustrate this, we study jet-particle correlations and the distributions of jet-induced identified particles with respect to the jet direction in Pb+Pb collisions at the LHC via a multi-phase transport model. We find a strong enhancement of baryon-to-meson ratios for associated particles at intermediate transverse momentum around the triggered jets in Pb+Pb collisions relative to p+p collisions, due to the coalescence of jet-excited medium partons. Since the lost energy from jets can diffuse to large angles, such baryon-to-meson-ratio enhancement is more pronounced for larger relative distance from the jet axis. We argue that the experimental confirmation of the enhancement of jet-induced baryon-to-meson ratios around the jets will provide an unambiguous evidence for the medium response to jet quenching in heavy-ion collisions.Comment: 6 pages, 3 figure
    • …
    corecore