225 research outputs found

    Earth fissures in Jiangsu Province, China and geological investigation of Hetang earth fissure

    Get PDF
    Earth fissures are a geohazard in Jiangsu Province, China. They can be caused by earthquakes and active faults, underground mining, groundwater extraction and landslides. In order to establish a provincial rehabilitation plan in Jiangsu, a range of monitoring programs, surveys, geological investigations and modeling have been implemented or planned. One of the focuses of the project is the land subsidence and earth fissures caused by excessive groundwater withdrawal in Suzhou, Wuxi and Changzhou (Su-Xi-Chang) area, southern Jiangsu Province. Hetang earth fissure within the Su-Xi-Chang area was first reported in 1995 and a series of investigation has been conducted since then. The site investigations and geophysical survey in 1997 have recognized the causative factor as the excessive groundwater drawdown coupled by the underlying bedrock ridge. An open trench excavation in 2007 and a plane strain analysis suggest that Hetang earth fissures may have cracked from the bedrock ridge to ground surface. Geological drilling in 2007 has further confirmed the existence and configuration of the ridge and extracted soil samples for laboratory tests to obtain soil parameters for numerical analyses and modeling of land subsidence and earth fissures in the Su-Xi-Chang area, Jiangsu, China. The laboratory tests are currently in progress and the result of numerical analyses and modeling is expected to be presented in the near future

    Ocular surface heat effects on ocular hemodynamics detected by real-time measuring device

    Get PDF
    AIM: To investigate the ocular hemodynamic effects of applying a hot compress to the eye. METHODS: The right eyes of five New Zealand white rabbits, both male and female, were hot-compressed for 18min. An independently designed novel ocular contact-type temperature measuring device was used to measure the ocular surface temperature before and after the heating. Relevant retrobulbar hemodynamic parameters such as peak systolic velocity (PSV), end diastolic velocity (EDV), and resistance index (RI) of each of the central retinal artery (CRA), long posterior ciliary artery (LPCA), and ophthalmic artery (OA), as well as the mean velocity (Vm) of the central retinal vein (CRV), were measured using a color Doppler flow imaging (CDFI) technique and expressed as mean values with standard deviation (mean±SD). A statistical analysis was conducted based on a paired t-test and the Wilcoxon signed-rank test. RESULTS: The employed real-time temperature measuring device was able to accurately measure ocular surface temperature during the hot-compress process. The temperature increased after the hot compress was applied. Analysis showed that the PSV and EDV values of the CRA and LPCA significantly increased after the application of the hot compress, as did the Vm of the CRV. There were no significant changes in the EDV of the OA nor the RI of each artery. CONCLUSION: This experiment, which is the first of its kind, confirms that the retrobulbar blood flow velocities can increase upon heating the ocular surface. This simple method may be useful in the future

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+ee^+e^- collider. In this method, the doubly tagged ψ(3770)D0D0\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure

    Functional building blocks for scalable multipartite entanglement in optical lattices

    Full text link
    Featuring excellent coherence and operated parallelly, ultracold atoms in optical lattices form a competitive candidate for quantum computation. For this, a massive number of parallel entangled atom pairs have been realized in superlattices. However, the more formidable challenge is to scale-up and detect multipartite entanglement due to the lack of manipulations over local atomic spins in retro-reflected bichromatic superlattices. Here we developed a new architecture based on a cross-angle spin-dependent superlattice for implementing layers of quantum gates over moderately-separated atoms incorporated with a quantum gas microscope for single-atom manipulation. We created and verified functional building blocks for scalable multipartite entanglement by connecting Bell pairs to one-dimensional 10-atom chains and two-dimensional plaquettes of 2×42\times4 atoms. This offers a new platform towards scalable quantum computation and simulation

    A huge-amplitude white-light superflare on a L0 brown dwarf discovered by GWAC survey

    Full text link
    White-light superflares from ultra cool stars are thought to be resulted from magnetic reconnection, but the magnetic dynamics in a fully convective star is not clear yet. In this paper, we report a stellar superflare detected with the Ground Wide Angle Camera (GWAC), along with rapid follow-ups with the F60A, Xinglong 2.16m and LCOGT telescopes. The effective temperature of the counterpart is estimated to be 2200±502200\pm50K by the BT-Settl model, corresponding to a spectral type of L0. The RR-band light curve can be modeled as a sum of three exponential decay components, where the impulsive component contributes a fraction of 23\% of the total energy, while the gradual and the shallower decay phases emit 42\% and 35\% of the total energy, respectively. The strong and variable Balmer narrow emission lines indicate the large amplitude flare is resulted from magnetic activity. The bolometric energy released is about 6.4×10336.4\times10^{33} ergs, equivalent to an energy release in a duration of 143.7 hours at its quiescent level. The amplitude of ΔR=8.6\Delta R=-8.6 mag ( or ΔV=11.2\Delta V=-11.2 mag), placing it one of the highest amplitudes of any ultra cool star recorded with excellent temporal resolution. We argue that a stellar flare with such rapidly decaying and huge amplitude at distances greater than 1 kpc may be false positive in searching for counterparts of catastrophic events such as gravitational wave events or gamma-ray bursts, which are valuable in time-domain astronomy and should be given more attention.Comment: 9 pages, 5 figures, 1 table, MNRAS accepte

    MYCT1-TV, A Novel MYCT1 Transcript, Is Regulated by c-Myc and May Participate in Laryngeal Carcinogenesis

    Get PDF
    BACKGROUND: MYCT1, a putative target of c-Myc, is a novel candidate tumor suppressor gene cloned from laryngeal squamous cell carcinoma (LSCC). Its transcriptional regulation and biological effects on LSCC have not been clarified. METHODOLOGY/PRINCIPAL FINDINGS: Using RACE assay, we cloned a 1106 bp transcript named Myc target 1 transcript variant 1 (MYCT1-TV) and confirmed its transcriptional start site was located at 140 bp upstream of the ATG start codon of MYCT1-TV. Luciferase, electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed c-Myc could regulate the promoter activity of MYCT1-TV by specifically binding to the E-box elements within -886 to -655 bp region. These results were further verified by site-directed mutagenesis and RNA interference (RNAi) assays. MYCT1-TV and MYCT1 expressed lower in LSCC than those in paired adjacent normal laryngeal tissues, and overexpression of MYCT1-TV and MYCT1 could inhibit cell proliferation and invasion and promote apoptosis in LSCC cells. CONCLUSIONS/SIGNIFICANCE: Our data indicate that MYCT1-TV, a novel MYCT1 transcript, is regulated by c-Myc and down-regulation of MYCT1-TV/MYCT1 could contribute to LSCC development and function

    Hippocampal Neurogenesis and Dendritic Plasticity Support Running-Improved Spatial Learning and Depression-Like Behaviour in Stressed Rats

    Get PDF
    Exercise promotes hippocampal neurogenesis and dendritic plasticity while stress shows the opposite effects, suggesting a possible mechanism for exercise to counteract stress. Changes in hippocampal neurogenesis and dendritic modification occur simultaneously in rats with stress or exercise; however, it is unclear whether neurogenesis or dendritic remodeling has a greater impact on mediating the effect of exercise on stress since they have been separately examined. Here we examined hippocampal cell proliferation in runners treated with different doses (low: 30 mg/kg; moderate: 40 mg/kg; high: 50 mg/kg) of corticosterone (CORT) for 14 days. Water maze task and forced swim tests were applied to assess hippocampal-dependent learning and depression-like behaviour respectively the day after the treatment. Repeated CORT treatment resulted in a graded increase in depression-like behaviour and impaired spatial learning that is associated with decreased hippocampal cell proliferation and BDNF levels. Running reversed these effects in rats treated with low or moderate, but not high doses of CORT. Using 40 mg/kg CORT-treated rats, we further studied the role of neurogenesis and dendritic remodeling in mediating the effects of exercise on stress. Co-labelling with BrdU (thymidine analog) /doublecortin (immature neuronal marker) showed that running increased neuronal differentiation in vehicle- and CORT-treated rats. Running also increased dendritic length and spine density in CA3 pyramidal neurons in 40 mg/kg CORT-treated rats. Ablation of neurogenesis with Ara-c infusion diminished the effect of running on restoring spatial learning and decreasing depression-like behaviour in 40 mg/kg CORT-treated animals in spite of dendritic and spine enhancement. but not normal runners with enhanced dendritic length. The results indicate that both restored hippocampal neurogenesis and dendritic remodelling within the hippocampus are essential for running to counteract stress

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
    corecore