433 research outputs found

    A generalized exchange-correlation functional: the Neural-Networks approach

    Full text link
    A Neural-Networks-based approach is proposed to construct a new type of exchange-correlation functional for density functional theory. It is applied to improve B3LYP functional by taking into account of high-order contributions to the exchange-correlation functional. The improved B3LYP functional is based on a neural network whose structure and synaptic weights are determined from 116 known experimental atomization energies, ionization potentials, proton affinities or total atomic energies which were used by Becke in his pioneer work on the hybrid functionals [J. Chem. Phys. 98{\bf 98}, 5648 (1993)]. It leads to better agreement between the first-principles calculation results and these 116 experimental data. The new B3LYP functional is further tested by applying it to calculate the ionization potentials of 24 molecules of the G2 test set. The 6-311+G(3{\it df},2{\it p}) basis set is employed in the calculation, and the resulting root-mean-square error is reduced to 2.2 kcalβ‹…\cdotmolβˆ’1^{-1} in comparison to 3.6 kcalβ‹…\cdotmolβˆ’1^{-1} of conventional B3LYP/6-311+G(3{\it df},2{\it p}) calculation.Comment: 10 pages, 1figur

    Dissipative time-dependent quantum transport theory: quantum interference and phonon induced decoherence dynamics

    Get PDF
    A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different coupling to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect

    Nonthermal entanglement dynamics in a dipole-facilitated glassy model with disconnected subspaces

    Full text link
    We construct a dipole-facilitated kinetic constraint to partition the Hilbert space into three disconnected subspaces, two of which are nonthermal and the other acts as an intrinsic thermal bath. The resulting glassy system freely oscillates in nonthermal subspaces, making the quantum entanglement perform like a substantial qubit. The spatially spreading entanglement, quantified by concurrence, fidelity and 2-R\'{e}nyi entropy, is found to be spontaneously recovered which is absent in other reference models. Under low-frequency random flip noise, this reversible hydrodynamics of entanglement holds high fidelity and volume law, while at high frequency thermalization unusually occurs leading to a strange phase transition. Our work offers an elaborate space structure for realizing ergodicity breaking and controllable entanglement dynamics.Comment: 6 pages, 4 figure
    • …
    corecore