5,147 research outputs found

    Study of the Global Alignment for the DAMPE Detector

    Full text link
    The Dark Matter Particle Explorer (DAMPE) is designed as a high energy particle detector for probing cosmic-rays and γ\gamma-rays in a wide energy range. The trajectory of the incident particle is mainly measured by the Silicon-Tungsten tracKer-converter (STK) sub-detector, which heavily depends on the precise internal alignment correction as well as the accuracy of the global coordinate system. In this work, we carried out a global alignment method to validate the potential displacement of these sub-detectors, and particularly demonstrated that the track reconstruction of STK can well satisfy the required objectives by means of comparing flight data and simulations.Comment: 18 pages, 11 figure

    Visualizing the elongated vortices in γ\gamma-Ga nanostrips

    Get PDF
    We study the magnetic response of superconducting γ\gamma-Ga via low temperature scanning tunneling microscopy and spectroscopy. The magnetic vortex cores rely substantially on the Ga geometry, and exhibit an unexpectedly-large axial elongation with aspect ratio up to 40 in rectangular Ga nano-strips (width ll << 100 nm). This is in stark contrast with the isotropic circular vortex core in a larger round-shaped Ga island. We suggest that the unusual elongated vortices in Ga nanostrips originate from geometric confinement effect probably via the strong repulsive interaction between the vortices and Meissner screening currents at the sample edge. Our finding provides novel conceptual insights into the geometrical confinement effect on magnetic vortices and forms the basis for the technological applications of superconductors.Comment: published in Phys. Rev. B as a Rapid Communicatio

    Correction Method for the Readout Saturation of the DAMPE Calorimeter

    Full text link
    The DArk Matter Particle Explorer (DAMPE) is a space-borne high energy cosmic-ray and γ\gamma-ray detector which operates smoothly since the launch on December 17, 2015. The bismuth germanium oxide (BGO) calorimeter is one of the key sub-detectors of DAMPE used for energy measurement and electron proton identification. For events with total energy deposit higher than decades of TeV, the readouts of PMTs coupled on the BGO crystals would become saturated, which results in an underestimation of the energy measurement. Based on detailed simulations, we develop a correction method for the saturation effect according to the shower development topologies and energies measured by neighbouring BGO crystals. The verification with simulated and on-orbit events shows that this method can well reconstruct the energy deposit in the saturated BGO crystal.Comment: 17 pages, 9 figures, to be published in Nuclear Inst. and Methods in Physics Research,

    Detection of a superconducting phase in a two-atom layer of hexagonal Ga film grown on semiconducting GaN(0001)

    Get PDF
    The recent observation of superconducting state at atomic scale has motivated the pursuit of exotic condensed phases in two-dimensional (2D) systems. Here we report on a superconducting phase in two-monolayer crystalline Ga films epitaxially grown on wide band-gap semiconductor GaN(0001). This phase exhibits a hexagonal structure and only 0.552 nm in thickness, nevertheless, brings about a superconducting transition temperature Tc as high as 5.4 K, confirmed by in situ scanning tunneling spectroscopy, and ex situ electrical magneto-transport and magnetization measurements. The anisotropy of critical magnetic field and Berezinski-Kosterlitz-Thouless-like transition are observed, typical for the 2D superconductivity. Our results demonstrate a novel platform for exploring atomic-scale 2D superconductor, with great potential for understanding of the interface superconductivity

    Reproducibility of a Parkinsonism-Related Metabolic Brain Network in Non-Human Primates: A Descriptive Pilot Study With FDG PET

    Get PDF
    Background: We have previously defined a parkinsonism-related metabolic brain network in rhesus macaques using a high-resolution research positron emission tomography camera. This brief article reports a descriptive pilot study to assess the reproducibility of network activity and regional glucose metabolism in independent parkinsonian macaques using a clinical positron emission tomography/CT camera. Methods: [F-18]fluorodeoxyglucose PET scans were acquired longitudinally over 3 months in three drug-naive parkinsonian and three healthy control cynomolgus macaques. Group difference and test-retest stability in network activity and regional glucose metabolism were evaluated graphically, using all brain images from these macaques. Results: Comparing the parkinsonian macaques with the controls, network activity was elevated and remained stable over 3 months. Normalized glucose metabolism increased in putarnen/globus pallidus and sensorirnotor regions but decreased in posterior parietal cortices. Conclusions: Parkinsonism-related network activity can be reliably quantified in different macaques with a clinical positron emission tomography/CT scanner and is reproducible over a period typically employed in preclinical intervention studies. This measure can be a useful biomarker of disease process or drug effects in primate models of Parkinson\u27s disease. (C) 2015 International Parkinson and Movement Disorder Societ
    corecore